透過您的圖書館登入
IP:3.145.60.149
  • 學位論文

根圈細菌Bacillus cereus C1L微膠囊製劑研發及真菌性病害防治應用研究

Microencapsulated formulation of rhizobacteria Bacillus cereus C1L and application in fungal disease control

指導教授 : 陳明汝

摘要


本研究嘗試利用微膠囊化技術,發展防治真菌性病害之生物製劑,以抑制病害並達化學農藥使用減量之效。實驗利用自行篩選之蠟狀芽孢桿菌 Bacillus cereus C1L,作為生物農藥製劑之菌株。試驗首先尋找最佳培養條件,再依菌株必需營養條件,尋找適合之低成本培養基,取代原昂貴培養基質以利大量產製。取得大量發酵液後,分別利用微膠囊化之噴霧乾燥法與擠壓法,進行製劑的製程。試驗最後將生物製劑產品,與化學農藥進行真菌性疾病防治之比較。 在尋找最佳培養條件的過程,當 B. cereus C1L 菌株利用 LB 培養基,培養在 28 ℃ 與轉速 180 rpm時,可使菌數達 109 CFU / mL。為了進行大量產製,需篩選出低成本培養基以取代 LB 培養基中昂貴的氮源成分,因此試驗中分別使用乳清粉、糖蜜酵母粉、啤酒酵母粉及黃豆粉,與 LB 進行比較。結果顯示,利用糖蜜酵母粉取代 LB 進行培養,當使用 5 公升發酵槽進行發酵,8 小時菌數即達 108 CFU / mL,並且在發酵 12 小時可得最佳抗病表現,葉片罹病度僅0.49 ± 0.29。在進一步放大培養試驗中,利用 250 與 2000 公升發酵 12 小時後,皆使菌數達 109 CFU / mL以上,然而最佳抗病能力表現分別出現在第 20 與第 8 小時,罹病度分別為1.70 ± 0.67 及 1.70 ± 0.82。 微膠囊化部分,噴霧乾燥試驗中,使用麥芽糊精與阿拉伯膠(gum arabic)進行保護。由於噴霧乾燥過程中,B. cereus C1L 存活率受到許多參數影響,因此選擇入口溫度 60∼100 ℃、保護劑 0∼25 % 與進氣量 800 L / h 作為限制條件。為使菌株達高存活率表現,再應用反應曲面法(response surface methodology, RSM)中 Box and Behnken 試驗設計,經序列二次規劃法(sequential quadratic programming, SQP),尋求最佳之微膠囊囊壁組合及製作條件。結果顯示,添加18.7 % 麥芽糊精與 12.5 % 阿拉伯膠作為保護劑,並設定入口溫度於 73.5 ℃,可有效維持菌體生物活性,達 0.42 % 高存活率,經驗證試驗後,與預期數值有相似結果。在擠壓法微膠囊化部分,使用 2 % 褐藻膠作為囊壁材質,可製出高存活率之顆粒製劑,菌數達 107 CFU / mL 以上,將顆粒與水澆灌於 28 日齡玉米植株,可誘導植物產生抵抗真菌疾病之能力。 生物製劑之目標在於減少或取代化學農藥之使用,因此試驗中將兩種不同形式之 B. cereus C1L 製劑,與化學農藥錳乃浦(maneb)及撲殺熱(probenazole)進行抗病能力之比較。試驗結果得知,玉米葉枯病推薦用藥錳乃浦表現最佳,罹病度等級僅0.92 ± 0.70;其次為B. cereus C1L 粉劑,罹病度為1.56 ± 0.69;另外,B. cereus C1L 粒劑與化學農藥撲殺熱有類似表現,罹病度分別為 2.26 ± 0.69 及 2.43 ± 0.50。本次試驗成功地利用誘導植物抗病菌株 B. cereus C1L 研發製成生物製劑,且在溫室試驗中,表現出與化學農藥類似之抗病能力。未來須經田間試驗觀察,製劑可否在自然環境中,有效誘導植物抵抗真菌性疾病,以達增進農作產量與農民福利之遠景。

並列摘要


Corn components can be found in thousands of products. However, maize diseases create significant problems for the maize grower. Diseases reduce yield potential, alter normal maturity and reduce grain quality. These factors slow harvest and increase field loss. Recently, a novel gram-positive strictly aerobic, motile sporulating bacterium was isolated from a soil sample and identified as a Bacillus cereus C1L. The strain presented remarkable activity to inhibit the growth of fungus. Thus, the purpose of this study was to formulate a new biopesticide using microencapsulation to provide protection from extreme environmental conditions and enhanced residual stability due to slow release of formulations. In addition, viable cell number of Bacillus cereus C1L is an important factor. For create a new pesticide, this study also optimized the best formula for maximum viability of Bacillus cereus C1L using response surface methodology(RSM)and sequential quadratic programming(SQP)method when subjected to a spray-drying process. At the same time, the cost-effective materials regards as media in scale-up fermentation were also evaluated. Results of growth medium formulation indicated that the cell numbers of Bacillus cereus C1L could be reached to 109cfu/mL and cultivation cost could be down to 0.7 NTD / kg when sugar yeast powder was used as the nitrogen source. Further encapsulation of this bacterium by spray drying and extrusion found that spray drying with corn starch showing the best plant induced resistance. Optimization results revealed that the strain could maintain 0.42 % viability when adding 18.3% corn starch and inlet temperature at 73.5 ℃. The verification experiment yielded a result close to the predicted values with similar performance. By comparing with chemical pesticide, results indicated that chemical pesticide Menbe showed the best efficiency of disease inhibition, following was B. cereus C1L encapuslation by spray drying. Chemical pesticide Probenazole and B. cereus C1L encapuslation by extrustion revealed no significant difference in disease control. In conclusion, we successfully formulate a new biopesticide with B. cereus C1L using microencapsulation to provide protection with cost-effective materials and high activity. In the future, the field test needs to investigate to prove that this biopesticide might provide a good solution for the best protection against fungus for maize grower.

參考文獻


郭怡孜。2006。應用最適化方法開發具隔熱性益生菌微膠囊。碩士論文。國立台
楊耿豪。2007。臘狀芽孢桿菌C1L菌株誘導玉米系統性抗葉枯病之應用研究。國立
劉益宏。2004。台灣百合根圈細菌之篩選及灰黴病防治應用研究。國立台灣大學
王柏徹。玉米葉枯病之生態及生物防治研究。國立台灣大學植物病理與為生物研
邱心怡。2004。藉最適化方法探討添加益菌質於囊壁材質最膠囊化原生菌之影響。

被引用紀錄


林雅婷(2011)。開發潛力益生乳酸菌作為飼料添加物〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2011.01419
鍾之儀(2010)。生產角蛋白酶之最適化培養基並應用角蛋白酶於動物飼糧之研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2010.01119

延伸閱讀