透過您的圖書館登入
IP:18.116.60.62
  • 學位論文

中空球形鐵酸鎳粉體合成與特性分析

Preparation and characterization of hollow spherical NiFe2O4 powder

指導教授 : 余宣賦

摘要


本研究以一結合了模板法與水熱技術的製備程序來合成中空球形的鐵酸鎳磁性粉體。在含有金屬離子(Ni2+、Fe3+)及葡萄糖的水溶液加入適量檸檬酸,以氨水調整溶液pH值,隨後進行180°C水熱反應12小時,待反應結束收集粉體並且乾燥,最後進行煆燒過程後得一中空球形結構鐵酸鎳。實驗過程中將添加不同含量的檸檬酸、葡萄糖以及改變溶液pH值等不同參數所製得的乾燥粉及煆燒粉以X-光繞射分析儀、熱重分析儀、熱示差分析儀、傅氏轉換紅外線光譜儀、掃描式電子顯微鏡和超導量子干涉磁量儀來分析其特性,以了解所製得鐵酸鎳的性質與製程參數關係。結果顯示以Ni2+:Fe3+:檸檬酸:葡萄糖莫爾比為1:2:2.6:7且在中性環境下所製得粉體在兩階段煆燒(400+1000°C)後可得緻密的中空鐵酸鎳球形粉體,在外加磁場10 kOe下呈現磁場強度為39 emu/g,殘留磁場強度為8.45 emu/g,而矯頑力約為62 Oe。

關鍵字

水熱法 模板法 中空球 鐵酸鎳

並列摘要


Hollow spherical nickel ferrite magnetic powders (NiFe2O4) were prepared using process combining template technique and hydrothermal method. Aqueous solutions, containing the required amounts of Ni2+, Fe3+, glucose and citric acid, with controlled pH (by using NH4OH(aq)) were undergone hydrothermal reactions at 180°C for 12 h. The resulted slurries were collected and dried. The dried powder was calcined to from hollow spherical NiFe2O4. The specimens were characterized using X-ray diffractometer, termograviometric analyzer, differential scanning calorimeter, Fourier transform infrared spectrometer, scanning electron microscope and superconducting quantum interference device magnetometer. Effects of process parameters on the properties of prepared NiFe2O4 were investigated and discussed. The results indicate that the hollow, spherical NiFe2O4 particles with dense crust can be produced using the aqueous solution having molar ratios of Ni2+ : Fe3+ : citric acid : D(+)-glucose = 1:2:2.6:7 and pH = 7 as the strating solution. After calcining the dried powder using a two-stage heating procedure (400 + 1000°C), hollow spherical nickel ferrite powder with dense crust can be produced. The hollow spherical nickel ferrite powder obtained using a neutral starting solution of Ni2+ : Fe3+ : citric acid : D(+)-glucose = 1:2:2.6:7 and calcing in a two-stage heating procedure (400+1000°C) had saturated magnetization (measured at 10000 Oe) of 39 emu/g, remanence magnetization of 8.45 emu/g and coercivity of 62 Oe

參考文獻


1. Jun, Y., Seo, J., Cheon, J. (2008). Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences. Accounts of Chemical Research, 41(2), 179-189. doi:10.1021/ar700121f
2. Gomes, J. A., Sousa, M. H., Tourinho, F. A., Aquino, R., Silva, G. J., Depeyrot, J., Dubois, E., Perzynski, R. (2008). Synthesis of core-shell ferrite nanoparticles for ferrofluids: Chemical and magnetic analysis. The Journal of Physical Chemistry C, 112, 6220-6227. doi:10.1021/jp7097608
3. Jun, Y., Lee, J., Cheon, J. (2008). Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angewandte Chemie International Edition, 47(5122), 5135. doi:10.1002/anie.200701674
4. Shchukin, D. G., Radtchenko, I. L., Sukhorukov, G. B. (2003). Micron-scale hollow polyelectrolyte capsules with nanosized magnetic Fe3O4 inside. Materials Letters, 57, 1743-1747. doi:10.1016/S0167-577X(02)01061-3
5. Shchukin, D. G., Radtchenko, I. L., Sukhorukov, G. B. (2003). Synthesis of nanosized magnetic ferrite particles inside hollow polyelectrolyte capsules. Journal of Physical Chemistry B, 107, 86-90. doi:10.1021/jp0265236

延伸閱讀