透過您的圖書館登入
IP:3.17.80.197
  • 學位論文

金屬氧化物/聚醯亞胺複合薄膜對LCD製程抗靜電之研究

The study of antistatic properties of Polyimide/zinc oxide and Polyimide/tin oxide compound films for LCD cell process

指導教授 : 郭文正

摘要


本研究主要的目的是將導電性金屬氧化物氧化鋅(ZnO)及二氧化錫(SnO2),以N-甲基四氫吡咯酮(NMP)為分散媒,加入聚醯胺酸(PAA)之中再以用旋轉塗佈法(Spin coating)之方式將此混合物均勻的塗佈於玻璃上,經過250℃高溫脫水縮合聚合成聚醯亞胺(Polyimide,PI)高分子,使其成為PI/微米SnO2及PI/奈米ZnO之複合薄膜具有抗靜電之功效。 對於PI/奈米ZnO複合薄膜之實驗,以(A)ZnO/NMP/PAA=2/100/6、(B)ZnO/NMP/PAA=4/100/6、(C)ZnO/NMP/PAA=6/100/6 (W %),之不同比例混合,在玻璃上形成薄膜後測其表面阻抗值,發現此複合薄膜之膜厚及奈米ZnO之添加量為其影響薄膜表面阻抗值之主要因素,針對於此我們把膜厚控制於400Å∼500Å,經實驗之後我們發現如下結果: (A)ZnO/NMP/PAA=2/100/6表面阻抗為4.36E+11Ω/cm2, (B)ZnO/NMP/PAA=4/100/6表面阻抗為3.95E+11Ω/cm2, (C)ZnO/NMP/PAA=6/100/6表面阻抗為2.07E+11Ω/cm2。 對於PI/微米SnO2複合薄膜之實驗,以(A)SnO2/NMP/PAA=2/100/6、(B)SnO2/NMP/PAA=4/100/6、(C)SnO2/NMP/PAA=6/100/6 (W %),之不同比例混合,在玻璃上形成薄膜後測其表面阻抗值,發現當SnO2/NMP/PAA=2/100/6時,複合薄膜之平均膜厚及微米SnO2之添加量均會影響薄膜之表面阻抗值。當SnO2/NMP/PAA=4/100/6、及SnO2/NMP/PAA=6/100/6時只有微米SnO2之添加量會影響薄膜之表面阻抗值。經實驗之後我們發現如下結果: (A)SnO2/NMP/PAA=2/100/6表面阻抗為5.26E+10Ω/cm2, (B)SnO2/NMP/PAA=4/100/6表面阻抗為4.32E+10Ω/cm2, (C)SnO2/NMP/PAA=6/100/6表面阻抗為2.07E+10Ω/cm2。 抗靜電材料之表面阻抗值介於1.0E+6Ω/cm2∼1.0E+12Ω/cm2,以上所測之材料皆可達到此要求。 我們利用PI耐高溫特性及氧化鋅(ZnO)、二氧化錫(SnO2)表面阻抗值介於抗靜電之範圍,把金屬氧化物均勻分散於NMP及PAA中,將其噴灑於金屬作業平台,或將其混合液塗佈於玻璃基板上形成薄膜,待經過250℃之高溫烘烤後,再裝置於機台的金屬作業平台上面,防止液晶顯示器之配向膜塗佈、配向膜固烤、配向(Rubbing)、印框、印銀點、組立及切裂等製程作業時,需要真空吸附玻璃基板以利固定基板作業,作業完成後因破真空使得玻璃與金屬作業平台間或與金屬作業平台上之絕緣材料摩擦而產生靜電放電之異常,導致於配向膜(PI)或是薄膜電晶體(TFT)的損壞。

關鍵字

抗靜電 氧化鋅 氧化錫 聚醯亞胺

並列摘要


The main purpose of this research was used the N-Methyl-2-pyrrolidone (NMP) as dispersant, and put ZnO and SnO2 into PAA. Then we needed to spread this mixture on the glass with the method of Spin coating on glass. After the dehydration in the high temperature 250℃,it gathered together into Polyimide (PI) macromolecular compounds and became the thin film of PI/ micron particles SnO2 and PI/ nano particles ZnO to reach the effect of anti-static electricity. The surface resistance of the pure PI membrane is 2.82E14Ω/cm2. For the experiment of PI/ ZnO,we mixed the (A) ZnO/NMP/PAA=2/100/6,(B) ZnO/NMP/ PAA =4/100/6 and (C) ZnO/NMP/PAA=6/100/6 (W %) together in different proportions. After it shaped up thin film on the glasses, we measured the surface resistance. Then we discovered the thin film thickness and additional quantity of ZnO that was the main factors, which affected the surface resistance of this thin film. In this regard, we controlled the thin film thickness within 400 Å∼500Å. After the experiment, we discovered that (A) ZnO/NMP/PAA=2/100/6 surface resistance is .36E+11 Ω/cm2, (B) ZnO/NMP/PAA=4/100/6 surface resistance is 3.95E+11Ω/cm2, (C) ZnO/NMP/PAA=6/100/6 surface resistance is 2.07E+11Ω/cm2。 In the same way of PI/ SnO2 film, we mixed the (A) SnO2/NMP/PAA=2/100/6, (B) SnO2/NMP/ PAA =4/100/6 and (C) SnO2/NMP/PAA=6/100/6 (W %) together in different proportions. After it shaped up thin film on the glasses, we measured the surface resistance. (A)SnO2/NMP/PAA=2/100/6 surface resistance is 5.26E+10Ω/cm2, (B)SnO2/NMP/PAA=4/100/6 surface resistance is 4.32E+10Ω/cm2, (C)SnO2/NMP/PAA=6/100/6 surface resistance is 2.07E+10Ω/cm2。 The surface resistance of the antistatic material is between 1.0E+6Ω/cm2 and 1.0E+12Ω/cm2, all the materials we measured could meet the request. We used the characteristics of PI heat-resistant and ZnO, SnO2 surface resistance within the range of antistatic, then to disperse the metal oxide on PI to become the thin film for antistatic. Furthermore, we spread its thin film on the metal board or on the glass, then set it on the metal board of machine to prevent the situations of Liquid Crystal Display (LCD) cell process, which needed the to do the adsorb glass operation. After we finished the work, as the reason of desorbed the glass on stage, which caused the friction of the glass and metal board or the insulating materials on metal stage that produced the extraordinary discharge of the static electricity and then finally caused the damages of LCD’s PI and TFT.

並列關鍵字

antistatic zinc oxide tin oxide Polyimide

參考文獻


11. Hans R.Kricheldorf,Handbook of Polymer Symthesis, PartB, MarcelDekker, Inc.(1992)
12. S.Takeda, H.Akiyama, and H.Kakikiuchi, J.Appl.Polymer Sci. 35, 1341 (1988)
14.L.Mascis,A.Kioul,Influence of siloxane composition and morphology on properties of polyimide-silica hybrids,Polymer 36(19),3649-3659 (1995)
17. Wha-Tzong Whang;Pei-Chun Chiang, Polymer, Vol.44, 2249-2254(2004)
4/8 (1999)

延伸閱讀