透過您的圖書館登入
IP:3.141.2.96
  • 學位論文

鋅/鎵(亞)磷酸鹽的合成、結構與性質研究

Syntheses, Structures and Properties of Zinc / Gallium Phosphates / Phosphites

指導教授 : 王素蘭

摘要


本論文包含7個化合物的合成、結構與性質研究,其中4個為鎵亞磷酸鹽,1個為鎵鋅亞磷酸鹽,2個有機無機複合鋅磷酸鹽。所有化合物的晶體結構皆以單晶X光繞射儀收集數據後進行結構解析,以粉末X光繞射圖譜比對理論圖譜確定樣品純度後,再進行氣體吸附與光學性質的測量。依照不同的金屬中心、結構相關性可分為A、B、C三個系統討論: 系統A中,提出一個"模板包覆"策略:若有機胺模板被推向無機孔隧側壁,將可釋放其孔隧空間。在此我們選擇長碳鏈多氮有機胺做為模板,在不同的溶劑比例可成功合成NTHU-15和A1系列化合物,兩者的結構特徵截然不同,A1的長碳鏈多氮有機胺模板阻塞其孔隧空間,而NTHU-15則否,由於NTHU-15的有機胺模板緊貼於無機孔隧的側壁,因此成功地釋放約24 %的溶劑可填充體積。並展現出卓越的二氧化碳選擇性吸附,NTHU-15已經成功的解決有機胺模板的超大孔隧結構長久以來不是"真正開放"骨架的難題。 系統B中延續NTHU-13系列的發展,使用長碳鏈單胺(tetradecylamine, 14C)做為有機模板,得到具超大孔隧的鎵鋅亞磷酸鹽 (56R-NTHU-13),將環數從48員環的微孔擴充至中孔等級的56員環,此外先前報導的微孔洞結構是藉由模板導引的水熱或溶劑熱反應下合成,然而從未由任何特定類型的模板分子來操縱結構的孔洞。在NTHU-13系統中,可藉由使用長碳鏈單胺模板,可以達到系統性的合成與預測孔徑大小和結構連接形式,並且此系統的成功是重大的突破。 系統C中延續NTHU-11與 (H2tmdp)[Zn2(HPO4)2(m-bdc)] (D),這些具有相同晶體結構的光學類比物研究。以極少溶劑合成法,分別於120 oC和160 oC下合成兩個NTHU-2的光學類比物C-120與C-160,其光學性質隨著溫度的提高而改變。C-160與D-160 會多出600 nm左右的橘黃光放光,並且進一步實驗發現,自由基應為特殊放光現象的主因,且藉由EPR實驗證實自由基是由經過高溫的tmdp所產生。

並列摘要


The synthesis, structural characterization, and properties of seven compounds are included in this thesis. Among them, four are gallium phosphites, one is gallium zincophosphite, and two are organic-inorganic hybrid zinc phosphates. The crystal structures and chemical formulas for all compounds were determined by single-crystal X-ray diffraction analysis; the purity was examined by comparing powder diffraction patterns with theoretical patterns; gas sorption and optical properties were also measured. Based on different metal centers, correlations of structure, these compounds are grouped into three systems for discussion, namely system A, B, and C.   System A, the “template-cladded” strategy was proposed: the free space of the channels would be created if the organic template were pushed toward the inorganic channel wall. Herein, we chose long-alkyl-chain polyamines as the template and successfully synthesized A1 and NTHU-15 series compound in different ratios of solvents. The structural features of A1 and NTHU-15 are different, long-alkyl-chain polyamine templates blocked the channel space in Al but not in NTHU-15. The organic templates anchor onto the inorganic channel walls, and therefore succeeded in releasing channel space of up to ~24 % of solvent accessible volume. NTHU-15 displays significant carbon dioxide selective adsorption, and has been successful at overcoming the long-standing problem of organic-templated extra-large-channel structures as opposed to a "true open" framework.   System B, the development of NTHU-13 series were continued, using the long-alkyl-chain monoamines (tetradecylamine, 14C) as templates to synthesize extra-large channel gallium zincophosphite (56R-NTHU-13), and enlarge the channel size from 48R microporous to 56R mesoporous. Besides, previously reported microporous structures have been synthesized by template-directed hydrothermal or solvothermal synthesis; however, the structural channels have not been controlled by using any specific type of template molecule. By using long-alkyl-chain monoamines, the systematic synthetic method and the channel size and the structural connectivity can be achieved and predicted in NTHU-13 series, and the success of the system is a major breakthrough.   System C, we continued the research of NTHU-11 and (H2tmdp)[Zn2(HPO4)2(m-bdc)] (D), which were various optical analogues with identical structures. Two optical analogues of NTHU-2, namely C-120 and C-160 were prepared by a minute amount of solvent under 120 oC and 160 oC, respectively. Their optical properties can be changed with increasing temperature. C-160 and D-160 display yellow-orange light with peaks centered at 600 nm. Further measurements showed that the unusual photoluminescence properties are caused by free radical, which were formed from tmdp by higher temperature and examined by EPR experiment.

參考文獻


[14] H. Y. Lin, C. Y. Chin, H. L. Huang, W. Y. Huang, M. J. Sie, L. H. Huang, Y. H. Lee, S. L. Wang, Science 2013, 339, 811.
[7] H. Li, M. Eddaoudi, M. O'Keeffe, O. M. Yaghi, Nature 1999, 402, 276.
[8] A. P. Cote, A. I. Benin, N. W. Ockwig, M. O’Keeffe, A. J. Matzger, O. M. Yaghi, Science 2005, 310, 1166
[1] (a) D. W. Breck, Zeolite Molecular Sieves,Wiley, New York, 1974; (b) J. M. Thomas, R. Raja, G. Sankar, R. G. Bell, Nature 1999, 398, 227; (c) R. D. Miller, Science 1999, 286, 421; (d) J. M. Thomas, Angew. Chem., Int. Ed. 1999, 38, 3588; (e) S. M. Kuznickl, et al. Nature 2001, 412, 720 ; (f) M. E. Davis, Nature 2002, 417, 813; (g) M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J.Wachter, M. O’Keeffe, O. M. Yaghi, Science 2002, 295, 469; (h) P. M. Forster, J. Eckert, J. S. Chang, S. E. Park, G. Férey, A. K. Cheetham, J. Am. Chem. Soc. 2003, 125, 1309; (i) S. Kitagawa, R. Kitaura, S. Noro, Angew. Chem. Int. Ed. 2004, 43, 2334; (j) R. Murugavel, A. ChoudHury, M. G. Walawalkar, R. Pothiraja, C. N. R. Rao, Chem. Rev. 2008, 108, 3549.
[3] R. M. Barrer, J. Chem. Soc. 1948, 127.

延伸閱讀