透過您的圖書館登入
IP:3.146.255.127
  • 學位論文

使用奈米圖形化藍寶石基板之氮化物發光二極體特性研究光電量測

Study of Gan-base Light-Emitting Diode with nano-patterned sapphire substrate

指導教授 : 林俊良
共同指導教授 : 陳耀煌
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


在本論文中,研究共分為四個部分。第一個部分在(NPSS)上製作長寬比的變化範圍為2.00至2.50奈米壓印技術;第二部分到第四部分則使用 Pitch: 6 μm ~ 800 nm Diameter: 3 μm ~ 400 nm 與深度的變化並以順向電壓量測法量測接面溫度。 第一部分:研究為證明有圖案結構的藍寶石基板(NPSS)與傳統(CSS)之接面溫度量測(Junction Temperature)和光輸出的比較,在(NPSS)製作方法的長寬比的變化範圍為2.00 nm至2.50 nm奈米壓印技術。接面溫度量測方法為順向電壓量測法,量測奈米壓印結構優於傳統結構溫度和熱阻都有明顯的下降,奈米壓印的光輸出功率從11%上升至27%。 第二部分至第四部分:分別使用不同奈米結構的變化間距為6 μm ~ 800 nm直徑為3 μm ~ 400 nm深度為1.2 μm、800 nm、400 nm的(NPSS)與傳統(CSS)之接面溫度量測(Junction Temperature)和光輸出的比較,並量測變電流(mW)、(IV)特性、(Life Curve Function)與變溫量測。接面溫度量測結果得知,在奈米結構中間距與直徑的變化是有密切的關西,奈米結構Chip在操作電流20 mA下3 μm ~ 400 nm變電部分會隨著間距與直徑等比例放大光功率越低。

並列摘要


In this paper, the study is divided into four parts. The first part (NPSS) on the production aspect ratio ranges from 2.00 to 2.50 nano-imprint technology; the second part of the fourth part is to use Pitch: 6 μm ~ 800 nm Diameter: 3 μm ~ 400 nm and depth changes and to smooth the voltage measurement method to measure junction temperature. Part I: study design to prove the structure of the sapphire substrate (NPSS) and traditional (CSS) of the junction temperature measurement (Junction Temperature) and the light output of the comparison in (NPSS) changes in production methods of the aspect ratio range of 2.00 nm to 2.50 nm nano-imprint lithography. Junction temperature measurement method for the forward voltage measurement method, measurement nano-imprint structure superior to the traditional structure of temperature and thermal resistance has dropped significantly, nano-imprint of the light output power from 11% to 27% . Part II to Part IV: use different spacing of nano-structural changes in 6 μm ~ 800 nm diameter of 3 μm ~ 400 nm depth of 1.2 μm, 800 nm, 400 nm of (NPSS) and traditional (CSS) of junction temperature measurement (Junction Temperature) and comparison of light output, and measure alternating current (mW), (IV) characteristics, (Life Curve Function) and variable temperature measurements. Junction temperature measurements that, in the nano-structure changes in the spacing and diameter are closely Kansai, nanostructures Chip operating current of 20 mA in the next 3 μm ~ 400 nm portion of substation spacing and diameter as lower optical power scaling.

參考文獻


[8] 孫培真,黃建晃,“新世代節能環保照明白光LED”,第 38 卷,第 7期,生活科技教育月刊,2005 年。
[13] 李立文,“應用於號誌燈之非對稱式發光二極體之設計與驗證”,碩士論文,國立中央大學,2007。
[10] Osram Opto Semiconductors, http://www.osram-os.com.
[16] C. Huh, K. S. Lee, E. J. Kang, and S. J. Park, “Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface,” Appl. Phys. Lett., vol. 93, p.9383, 2003.
[17]R.H. Horng,D.S. Wuu, and S. C. Wei,“AlGaInP/AuBe/glass light-emitting diodes fabricated bywaferbondingtechnology,” Appl. Phys.Lett. vol. 75, p. 154, 1999.

延伸閱讀