透過您的圖書館登入
IP:3.144.143.31
  • 學位論文

對製程中引發應力之P-型通道金氧半電晶體的1/f 雜訊研究

A Study of Low Frequency Noise in process Induced Stress PMOSFETs

指導教授 : 陳明哲

摘要


對於1.27奈米厚閘極之p型通導金氧半電晶體,可應用製程引發應力提升電洞的遷移率。由雜訊量測,我們可以得到淺溝槽絕緣引發應力下p型通導金氧半電晶體之缺陷密度及散射系數。我們可以由汲極電流得到通道寬和通道長方向的1/f 雜訊頻譜。在通道長方向,實驗結果顯示淺溝槽絕緣引發應力會導致更多的缺陷。然而,在通導寬方向,缺陷密度的降低主要來自邊緣結構的不同。同時,電性量測也可以告訴我們,應力並不是在通道寬方向唯一造成電洞的遷移率變化的原因。對雜訊和電性的量測實驗而言,反向窄通道效應(INCE)應是適合的解釋。

並列摘要


For 1.27nm thick gate oxide p-channel MOSFETs , the hole mobility booster by the means of process strained silicon (PPS) technique is applied. With the noise measurement, we can extract the trap density Nt and scattering factor α in STI compressive stress PMOSFETs. Specially, We characterize the 1/f noise power spectra density (PSD) of the drain current both in the channel width (W) and the channel length direction. In the channel length direction, the experiment results show that the STI induced stress can provide more interface trap density. However, in the channel width direction, the main decrease of the average trap density comes from the edge structure. The I-V measurement can also give us that the information the stress on narrow device is not the only reason for mobility change. With the combination of the Noise and I-V measurements, the inverse narrow channel effect may provide a appropriate interpretations to both experimental result.

並列關鍵字

STI Stress 1/f noise

參考文獻


[2]K. K. Hung, P. K. Ko, C. Hu, and Y. C. Chen, IEEE Trans. Electron Devices 37, 654 (1990)
[6]K. K. Hung, P. K. Ko, C. Hu, and Y. C. Cheng, “A unified model for the flicker noise in metal-oxide-semiconductor field-effect transistors”, IEEE Trans. Electron Devices 37, 654-665 (1990).
[7]S. Christensson, I. Lundstrom, and C. Svensson, “Low-frequency noise in MOS transistors-I theory”, Solid-State Electron. 11, 797-812 (1968).
[8]. E. Simoen, and C. Claeys, “On the flicker noise in submicron silicon MOSFETs”, Solid-State Electron. 43, 865-882 (1999).
[9]C. Surya and T. Y. Hsiang, “A thermal activation model for 1/f noise in Si-MOSFETs”, Solid-State Electron. 31, 959-964 (1988).

延伸閱讀