透過您的圖書館登入
IP:13.59.34.87
  • 期刊

表面分析技術應用於Å世代半導體元件檢測

Novel Investigation Methods for the Next-generation Semiconductor Devices by Using Surface Analysis Techniques

摘要


表面(Surface)是固態材料與外界交互作用的一個界面,此界面可能只佔有樣品厚度的萬分之一,卻是樣品與外在環境接觸最直接且反應最劇烈之交界,不同的材料性質與緻密程度皆會影響界面與外界的交互作用程度,因此本篇文章透過不同的表面分析技術(X光光電子能譜儀、歐傑電子能譜儀、飛行時間-二次離子質譜儀)檢測元件最表層(~10 nm)的化學特性,用以了解半導體材料表面的成份、化學組態、分子分佈及小範圍材料表面形貌與成份差異等資訊。此外,本研究亦使用紫外光光電子能譜儀(UPS)、低能量反轉光電子能譜儀(LEIPS)及可調控式氣體團簇離子束(GCIB)等相關技術對半導體材料之能隙變化及濺射行為進行一系列探討,用以發展多元面向的下世代半導體薄膜檢測技術。

並列摘要


The "surface" is an interface between solid materials and the surroundings. This "interface" may only occupy one ten-thousandth in thickness of the sample, where direct contact and the most significant interaction occur with the external environments. Different material properties cause various interactions between the specimen and the external atmosphere. Therefore, this research uses several surface analysis techniques (X-ray photoelectron spectroscopy, Auger electron spectroscopy, time-of-flight secondary ion mass spectrometry) to examine the surface composition, chemical state, molecular distribution, and small-spot analysis of the outermost layer (~10 nm) of the semiconductor thin films. Furthermore, ultraviolet photoelectron spectroscopy (UPS), low energy inverse photoemission spectroscopy (LEIPS), and controllable gas cluster ion beams (GCIBs) were also used in this study to determine the bandgap variation and the sputtering behaviors of semiconductor materials. A series of studies are discussed to develop multi-faceted detection technology for next-generation semiconductor devices.

延伸閱讀