透過您的圖書館登入
IP:18.191.211.66
  • 學位論文

臨場分析銅鋅雙金屬催化劑之催化構變平衡對二氧化碳還原反應活性之影響

In situ probing dynamic reconstruction of copper-zinc electrocatalyst for CO2 reduction

指導教授 : 陳浩銘
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


隨著十八世紀工業革命開始,人類科技迅速的發展進而增加了對能源的需求,因此為了供給如此龐大的需求,全世界開始使用大量石化能源,造就了溫室氣體的排放急遽增加,使得溫室效應日趨嚴重。隨著環保意識的抬頭,世界各地意識到開發綠色能源之重要性,其中以二氧化碳電催化還原反應為一個近幾年較為大家討論且可行的解決方案,此反應兼具成本低、可行性高且反應條件要求低。然而二氧化碳還原反應之產物對比於水分解反應來說較為複雜,可能產生甲酸、甲烷、一氧化碳、乙烯或乙醇等產物。若要將產物實際作為能源使用還需透過純化的步驟,這將使得成本提高而降低其經濟效益,因此催化劑之產物選擇性為相當重要之課題。 本實驗使用銅鋅雙金屬材料作為催化劑來探討在電催化反應過程中,對產物選擇性與催化金屬催化構變平衡之間的關聯性,藉由濺鍍沉積法合成不同比例的銅鋅氧化物材料,進而探討銅位點之動態表徵對產物選擇性之影響,再透過臨場的同步輻射鑑定技術之K邊緣X光吸收光譜及X光繞射作為輔助得出在適量的鋅與氧化鋅下會使得銅之配位數因反奧斯瓦爾德熟化而產生變化。進而發現結晶重排後且具有較低配位數之銅對甲烷具有較好的產物選擇性。更重要的是,本實驗藉由臨場分析銅之催化構變,提供一個能夠提高甲烷產出之效率的方法。

並列摘要


Unraveling the dynamic characterization of electrocatalyst during electrochemical CO2 reduction reaction (CO2RR) is critical factor to improve the production efficiency and selectivity because most pre-electrocatalysts undergo structural reconstruction and surface rearrangement under working condition. Herein, a series of pre-electrocatalyst including CuO, ZnO and two different ratios of CuO/ZnO were systematically designed by sputtering process to clarify the correlation of the dynamic characterization of Cu site in the presence of Zn/ZnO and product profile. The evidence provided by in situ X-ray absorption spectroscopy (XAS) indicated appropriate Zn/ZnO levels could induce the variation of coordination number of Cu site through reversing Ostwald ripening. Specifically, the recrystallized Cu site with lower coordination number exhibited preferential production of methane (CH4). More importantly, our findings provided a promising approach for the efficient production of CH4 by in situ reconstructing Cu-based binary electrocatalyst.

參考文獻


1.M. R. Mansouri Daneshvar, M. Ebrahimi and H. Nejadsoleymani, Environmental Systems Research, 2019, 8, 7.
2.L. Atique, I. Mahmood and F. Atique, American-Eurasian Journal of Agricultural and Environmental Sciences, 2014, 14, 73-84.
3.N. Abas, A. Kalair and N. Khan, Futures, 2015, 69, 31-49.
4.D. Y. Leung, G. Caramanna and M. M. Maroto-Valer, Renewable and Sustainable Energy Reviews, 2014, 39, 426-443.
5.B. Metz, O. Davidson, H. De Coninck, M. Loos and L. Meyer, IPCC Special Report on Carbon Dioxide Capture and Storage, Cambridge: Cambridge University Press, 2005.

延伸閱讀