透過您的圖書館登入
IP:18.116.13.113
  • 學位論文

以大環金屬錯合物為聯結基團之雙股降冰片烯高分子梯芃

Polynorbornene-based Double Stranded Ladderphanes with Macrocyclic Metal Complex Linkers

指導教授 : 陸天堯

摘要


摘要 本篇論文的主旨在分別合成出中心金屬為鎳或鈀以及中間為自由配體的單體與高分子梯芃,探討不同金屬之大環錯合物在物理性質上的差異性。 利用核磁共振光譜測量,單體與相對應的高分子梯芃間的吸收峰的化學位移相似,代表其聚合前後的組成一致。紫外光/可見光吸收的測量發現,當配位金屬鎳或鈀時,在波長 400 nm 和 500 nm 左右的吸收位置會出現 metal to ligand charge transfer (MLCT) 和 ligand to metal charge transfer (LMCT) 的兩個吸收峰,相較於沒有金屬配位,其吸收波峰則在 330 nm 左右。使用循環伏安法測量,當單體聚合成相對應高分子梯芃後,單體間的距離約為 5-6 Å,電子的傳遞變得較為容易。掃描式穿隧電子顯微鏡觀察高分子梯芃在 HOPG 的影像,藉由分子間末端基團的 p-p 作用力與骨架間的凡得瓦爾力,可與相鄰的高分子延伸接合,聚集堆疊排列成二維結構。利用熱重量分析法顯示此一系列以鎳或鈀金屬配位的大環錯合物為聯結基團之高分子梯芃,昇溫至 300 ℃ 才開始分解。

並列摘要


Abstract Double stranded polybisnorbornene-based ladderphanes having multilayer planar macrocyclic metallic linkers are synthesized. The metals can be Ni and Pd. Structural proof is based mainly by spectroscopic resonance. In the absorption specific, both MLCT and LMCT are showed at lamda = 588 nm and lamda = 392 nm for nickel, lamda = 502 nm and lamda = 414 nm for palladium complexes. There is essentially no change in lamdamax for monomer and the corresponding polymers ladderphanes. Cyclic voltammetry measurements show that polymers exhibits at slightly lower oxidation potential than that of the corresponding monomers. STM of the Ni-containing polymeric ladderphanes suggests that these polymer, like other analogous, tend to aggregate in an ordered manner on graphite surface. TGA studies indicates that theses polymers are thermally stability until 300 ℃.

參考文獻


4. Cannizzo, L. F.; Grubbs, R. H. Macromolecules 1987, 20, 1488-1490.
7. Schneider, M. F.; Blechert, S. Angew. Chem. Int. Ed . 1996, 35, 411-412.
10. (a) Sattigeri, J. A.; Shiau, C.-W.; Hsu, C. C.; Yeh, F. F.; Liou, S.; Jin, B.-Y.; Luh, T.-Y. J. Am. Chem. Soc. 1999, l2l, 1607-1608. (b) Shiau, C.-W.; Sattigeri, J. A.; Shen, C. K.-F.; Luh, T.-Y . J. Organomet. Chem. 1999, 572, 291-293. (c) Hsu, C.-C.; Hung, T.-H.; Liu, S.; Yeh, F.-F.; Jin. B.-Y.; Sattigeri, J. A.; Shiau, C.-W.; Luh, T.-Y. Chem. Phys. Lett. 1999, 311, 355-361. (d) Churikov, V. M.; Hung, M.-F.; Hsu, C.-C.; Shiau, C.-W.; Luh, T.-Y. Chem. Phys. Lett. 2000, 332, 19-25. (e) Luh, T.-Y.; Chen, R.-M.; Hwu, T.-Y.; Basu, S.; Shiau, C.-W.; Lin, W.-Y.; Jin, B.-Y.; Hsu, C.-C. Pure Appl. Chem. 2001, 73, 243-246. (f) 蕭崇瑋,國立台灣大學化學研究所碩士論文,1999. (g) Lin, W.-Y.; Murugesh, M. G.; Sudhakar, S.; Yang, H.-C.; Tai, H.-C.; Chang, C.-S.; Liu, Y.-H.; Wang, Y.; Chen, I.-W. P.; Chen, C.-h.; Luh, T.-Y. Chem. Eur. J. 2006, 12, 324-330.
17. Ke, Y.-Z.; Lee, S.-L.; Chen, C.-h.; Luh, T.-Y. Chem. Asian J. 2011, 6, 1748-1751.
22. Cotton, F. A.; Wilkinson, G. Advance Inorganic Chemistry, fouth Ed. John Wiley&Sons. Inc., N.Y., 1979.

延伸閱讀