透過您的圖書館登入
IP:18.217.194.39
  • 學位論文

即時啟動與停止分子梭運動行為之研究

Parking and Restarting a Molecular Shuttle In Situ

指導教授 : 邱勝賢

摘要


在第一章節中,我們運用了一個簡單精巧的合成策略,在一鍋化的反應中建構出一個以大環分子 BPX26C6 為環形元件,而桿狀元件上具有兩個單吡啶辨識中心及一個2,2’-聯吡啶辨識中心的[2]車輪烷分子。由於此[2]車輪烷分子的環形元件可在兩個單吡啶辨識中心之間往返穿梭,因而可稱之為分子梭。在此我們除了證明分子梭上的大環元件確實可作往返穿梭運動並計算其穿梭速率,同時也藉由加入簡單的化學試劑,即時控制並偵測其大環元件運動行為之改變。當我們加入酸或金屬離子時,可以選擇性地將大環元件停留在桿狀分子中間的2,2’-聯吡啶陽離子辨識中心,亦或是停留在桿狀分子兩端的單吡啶陽離子辨識中心之一;而後只要再加入互補的化學試劑(鹼或金屬離子錯合物螫合基)即可使分子梭回復到原先大環往返穿梭的狀態。 而在第二章節中,我們簡短介紹了恆溫滴定微卡計之運作原理與操作原則,同時透過數個實例介紹,利用恆溫滴定微卡計進行直接測量鍵結常數以及透過競爭實驗間接測量鍵結常數之方法。

並列摘要


Herein we report an easy-to-synthesize [2]rotaxane, which incorporates two ionic monopyridinium stations and one 2,2’-bipyridine station as the shaft of the dumbbell-shaped component and a bis-p-xylyl[26]crown-6(BPX26C6)unit as the macrocyclic component. In this molecular shuttle, the BPX26C6 unit can be docked selectively on either the central 2,2’-bipyridine station or one of the two terminal pyridinium stations, and subsequently, returned to its shuttling molecular motion through the in situ addition of simple reagents(acid/base or metal ion/metal-ion-complexing ligand pairs). In chapter 2, we brief introduce the theory and principle of measuring binding constant by isothermal titration calorimetry. Several examples was reported to demonstrate the determination of binding constant by direct ITC experiment and competition ITC experiment.

參考文獻


(1) (a) Molecular electronics: science and technology / edited by Ari Aviram and Mark Ratner; New York Academy of Sciences: New York, 1998; (b) Collier, C. P.; Mattersteig, G.; Wong, E. W.; Luo, Y.; Beverly, K.; Sampaio, J.; Raymo, F. M.; Stoddart, J. F.; Heath, J. R. Science 2000, 289, 1172-1175; (c) Yu, H.; Luo, Y.; Beverly, K.; Stoddart, J. F.; Tseng, H. R.; Heath, J. R. Angew. Chem. Int. Ed. 2003, 42, 5706-5711; (d) Flood, A. H.; Ramirez, R. J. A.; Deng, W.-Q.; Muller, R. P.; Goddard III, W. A.; Stoddart, J. F. Aust. J. Chem. 2004, 57, 301-322.
(2) (a) Anelli, P. L.; Spencer, N.; Stoddart, J. F. J. Am. Chem. Soc. 1991, 113, 5131-5133; (b) Anelli, P. L.; Asakawa, M.; Ashton, P. R.; Bissell, R. A.; Clavier, G.; Gorski, R.; Kaifer, A. E.; Langford, S. J.; Mattersteig, G.; Menzer, S.; Philp, D.; Slawin, A. M. Z.; Spencer, N.; Stoddart, J. F.; Tolley, M. S.; Williams, D. J. Chem. Eur. J. 1997, 3, 1113-1135; (c) Bermudez, V.; Capron, N.; Gase, T.; Gatti, F. G.; Kajzar, F.; Leigh, D. A.; Zerbetto, F.; Zhang, S. Nature 2000, 406, 608-611; (d) Cao, J.; Fyfe, M. C. T.; Stoddart, J. F.; Cousins, G. R. L.; Glink, P. T. J. Org. Chem. 2000, 65, 1937-1946; (e) Leigh, D. A.; Troisi, A.; Zerbetto, F. Angew. Chem. Int. Ed. 2000, 39, 350-353; (f) Loeb, S. J.; Wisner, J. A. Chem. Commun. 2000, 1939-1940.
(3) Sutherland, I. O. In Annu. Rep. NMR Spectrosc.; Mooney, E. F., Ed.; Academic Press: 1972; Vol. 4, p 71-235.
(4) It has been demonstrated that the shuttling process could be initiated by the addition of a polar solvnt that disrupts hydrogen-bonding interactions between the macrocycle and the dumbbell component of a glycylglycine rotaxane in a less-polar solvent, but this procedure seems to be irreversible; see: Leigh, D. A.; Murphy, A.; Smart, J. P.; Slawin, A. M. Z. Angew. Chem. Int. Ed. Engl. 1997, 36, 728-732.
(5) (a) Lane, A. S.; Leigh, D. A.; Murphy, A. J. Am. Chem. Soc. 1997, 119, 11092-11093; (b) Hannam, J. S.; Lacy, S. M.; Leigh, D. A.; Saiz, C. G.; Slawin, A. M. Z.; Stitchell, S. G. Angew. Chem. Int. Ed. 2004, 43, 3260-3264; (c) Kawai, H.; Umehara, T.; Fujiwara, K.; Tsuji, T.; Suzuki, T. Angew. Chem. Int. Ed. 2006, 45, 4281-4286.

延伸閱讀