透過您的圖書館登入
IP:3.147.42.168
  • 學位論文

聚苯胺/氧化釕/石墨烯奈米複合材料之合成及其電容效能研究

The synthesis and capacitive performance of polyaniline/RuO2/graphene nanocomposites

指導教授 : 廖建勛

摘要


本研究利用Hummer法製備氧化石墨烯(GO),利用微波輔助合成加速聚苯胺生長在GO表面上,將反應時間縮短至10分鐘內,另將二氧化釕(RuO2)奈米粒子沉積在聚苯胺/氧化石墨烯的複合材料上。將磺酸基團(-SO3-)導入GO的邊緣,以提昇其導電性和比表面積。使用X光繞射分析儀、傅立葉轉換光譜、熱重分析儀、電子顯微鏡來分析這些複合材料的型態和結構特性。為評估電容的性能,複合材料的電化學性質由恆流充放電測量來進行分析,在電流密度為0.1 A/g下。由於聚苯胺及氧化石墨烯的協同作用,其複合材料在比例9:1(PG91)相對於單一材料有較高的比電容495 F/g,PSG91複合材料也有相似的比電容值486 F/g。將二氧化釕沉積在PANI/GO複合材料上,當比率在PANI/GO= 9/1獲得最高比電容1215 F/g,顯示綜效加乘的效果。因此,PANI/GO/RuO2奈米複合材料有良好的協同效應應用在超級電容器上。

並列摘要


In this study, the modify Hummer method was used to prepare graphene oxide (GO). The polymerization time of PANI, deposited on the surface of GO, was shorten in 10 minutes. Afterward, the RuO2 nanoparticles deposited polyaniline/graphene oxide composite were also prepared by microwave-assisted synthesis. In order to enhance the conductivity and specific surface area, sulfonic groups (-SO3-) were introduced into the edge of GO. The features of morphology and structure properties of composites were analyzed by XRD, FTIR, TGA and SEM. To evaluate the capacitive performance, the electrochemical properties of composites were analyzed by galvanostatic charge/ discharge measurement under current density of 0.1 A/g. PG91 nanocomposite shows the higher specific capacitance 495 F/g than individual compound and PSG91 also has similar specific capacitance 486 F/g. Then, the highest capacitance 1215 F/g obtained for RuO2 deposited PANI/GO composite at ratio of PANI/GO=9/1 reveals a synergistic compared to individual components. Therefore, PANI/GO/RuO2 nanocomposites have a positive synergistic effect and potential for the applications of supercapacitors.

參考文獻


[1]A. G. Pandolfo, A. F. Hollenkamp, “Carbon properties and their role in supercapacitors,” Journal of Power Sources, vol. 157, no. 1, pp. 11-27, 2006.
[2]Y. Zhai et al., “Carbon materials for chemical capacitive energy storage,” Advanced Materials, vol. 23, no. 42, pp. 4828-4850, 2011.
[3]J. Huang, B. G. Sumpter, and V. Meunier, “Theoretical model for nanoporous carbon supercapacitors,” Angewandte Chemie - International Edition, vol. 47, no. 3, pp. 520-524, 2008.
[4]A. Burke, “Ultracapacitors: Why, how, and where is the technology,” Journal of Power Sources, vol. 91, no. 1, pp. 37-50, 2000.
[5]S. Yan et al., “RuO2/carbon nanotubes composites synthesized by microwave-assisted method for electrochemical supercapacitor,” Synthetic Metals, vol. 159, no. 1-2, pp. 158-161, 2009.

延伸閱讀