透過您的圖書館登入
IP:3.21.100.34
  • 學位論文

預彎基板對於IGBT功率模組之接合可靠度分析與研究

Analysis and Investigation of Assembly Reliability for IGBT Power Module

指導教授 : 李昌駿

摘要


由於現今功率模組負載之功率需求愈來愈高,晶片工作溫度也隨之上升,這導致功率模組的散熱需求相對地提高需多。功率模組高工作溫度下所導致散熱不良與熱應力,已經有不少學者藉由修改結構,更換材料等方法來克服。然而,製程所產生的熱應力與翹曲量,也是導致功率模組散熱不良的原因,已經發現直接將翹曲之模組做組裝,會使結構中燒結銀破裂之情況。因此,本研究藉由將基板往翹曲之反方向預彎之方法,來抵銷製程上所產生之不良翹曲量。 根據功率模組之實際結構建立之三為有限元素模型,透過有限元素數值分析的方法,且藉由DBC板與基板接合之製程實驗測量之翹曲量驗證使用有限元素法模擬之可信度。分別對結構中燒結銀厚度、DBC基板中之銅片厚度、Diode晶片厚度與Diode晶片偏移距離作參數化分析,觀察改變參數後對於結構中銲料之製程應力的影響。並且觀察預彎基板對於製程應力與翹曲量之效果。結果顯示,修改燒結銀之厚度比較好,但須注意Solder是否會因為應變過大產生裂縫。

並列摘要


Cause of power modules has higher and higher loading power day by day, the temperature of working chip has risen. The height temperature let the power modules have to worry about how to cooling down. Therefore, some people have do some experiment to get over the reason that cause power modules fail. The warpage of power modules could cause sintered silver which in module structure cracked when module assembly. Base on pre-bending method, this paper used it to cancel out the warpage which cause in the process of power modules. By using analysis of simulation, process of power modules and pre-bending method influence on the thermal stress. To see the effect by change the geometric parameters such as diode chip height, diode chip offset distance, thickness of copper in the DBC board, and thickness of sintering silver. The results showed that thicker sintered silver was better, but must being taken on whether solder broken.

參考文獻


[2] C. Gillot , C. Schaeffer , C. Massit and L. Meysenc, "Double-sided cooling for high power IGBT modules using flip chip technology," IEEE Trans. Compon. Packag. Technol., vol. 24, no. 4, pp. 698-704, 2001.
[4] T. Tokuyama, K. Nakatsu, A. Nishihara, K. Sasaki, and R. Saito, "A novel direct water and double-sided cooled power module for HEV/EV inverter," Proc. Int. Conf. on Electronics Packaging, Toyama, Japan, Apr. 23-25, 2014.
[5] L. Boteler, D. Urciuoli, G. Ovrebo, D. Ibitayo and R. Green, "Thermal performance of a dual 1.2 kV, 400 A silicon-carbide MOSFET power module", Proc. IEEE 26th Annu. Semicond. Thermal Meas. Manage. Symp., pp. 170-175, 2010.
[7] H. Lu et al., “Design for reliability of power electronics modules,” Microelectron. Reliab., vol. 49, no. 9-11, pp. 1250–1255, Sep. 2009.
[8] T. Kanata et al., "Development trends of power semiconductors for hybrid vehicles," in Proc. Int. Power Electron. Conf., Sapporo, Japan, Jun. 2010, pp. 778–782.

延伸閱讀