透過您的圖書館登入
IP:18.218.38.125

臺灣師範大學化學系學位論文

國立臺灣師範大學,正常發行

選擇卷期


已選擇0筆
  • 學位論文

本實驗室所研發的3,6-bis(1-methyl-4-vinylpyridinium) carbazole diiodide (BMVC)是一個良好的四股結構穩定者,在細胞實驗下顯示其能有效抑制癌症細胞增生,而且與DNA作用後,其螢光性質會增強,所以亦可作為一個相當優良的螢光探針,為了研發更強而有利的四股結構穩定者,我們想要了解BMVC與DNA的作用模式為何?與不同結構的DNA的作用差異又是如何?所以我們利用拉曼光譜能以振動態角度去觀察兩物質作用機制的優勢,我們希望能由此得到更多有利的研發訊息,但由於螢光對於拉曼光譜而言是相當困擾的一件事,所以我們改採用結構類似但沒有螢光性質的3,6-bis(1-methyl -3- vinylpyrazinium) carbazole diiodide (BMVC-4),期望從分析其與DNA作用後的拉曼光譜差異,讓我們可以去模擬BMVC是如何與不同結構的DNA作用,並從中獲得有利訊息去研發更具潛力的新四股結構穩定者!

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

摘 要 本論文分成兩大部分旨在合成新穎有機催化劑,並應用在不對稱反應上: 第一部分:自2000年以來,以L-脯胺酸催化不對稱有機反應可得到良好的產率與鏡像超越值,因此L-脯胺酸衍生之有機催化劑的合成與開發逐漸成為研究重要的議題。依此概念,本實驗室結合了特有的樟腦架構,及吡咯啶結構設計合成新的有機催化劑74,也將其應用在Michael加成反應和Friedel-Crafts烷化反應,雖然結果不如預期,但希望在將來此催化劑在其它不對稱合成形式可以有好的應用。 第二部分:利用本實驗室設計的含樟腦架構之對掌硫尿素-L-脯胺酸有機催化劑82催化Mannich反應。以雙羥基丙酮和含PMP保護之亞胺164為起始物,改變不同溶劑種類、催化劑的劑量數、更換不同添加劑,探討對產物鏡像選擇性的影響,得到最高產率為63 %,但立體選擇性不佳。之後也以雙羥基丙酮、4-硝基苯甲醛和對甲氧基苯胺為起始物,進行三分子的Mannich反應,得到產率為55 %,但立體選擇性不佳,適當的修飾有機催化劑結構,希望能應用在其它反應形式。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

我們利用periodic DFT的方法,計算乙醇和甲醇在1-2Ni/gamma-Al2O3(110)表面的吸附結構和分解路徑。在我們的研究當中,乙醇和甲醇利用OH基吸附在表面的鋁原子上有較好的吸附能,計算的結果分別為-1.61eV和-1.41eV。 在乙醇反應的探討當中,乙醇會在表面上形成四圓環或五圓環的結構,其中,四圓環的中間產物最後經過1.60 eV的能障後會斷C-C鍵形成CH3 + CO,而五圓環的中間產物會斷C-O鍵形成乙烯,所需要克服的能障為1.27 eV。甲醇可能經過脫氫反應形成一氧化碳,所需要克服的最大能障為1.27eV,而甲醇斷C-O鍵形成CH3 + OH所需要克服的能障為1.51eV。乙醇在我們模擬的情況當中有較佳的吸附能,且甲醇在整個反應當中所需要克服的能障在比較上相對比乙醇大。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

本論文主要探討單壁奈米碳管與共軛高分子複合材料於不同溶劑下之光學分析。實驗選用共軛高分子作為介面活性劑,不僅可以將聚集的單壁奈米碳管分散,而且還對於單壁奈米碳管的構型或特性有選擇性;不同溶劑的極性、密度與構形,對於共軛高分子與單壁奈米碳管的溶解度、選擇性與分散性都具有影響力。實驗將單壁奈米碳管使用共軛高分子分散於溶劑中,利用吸收光譜分析樣品的溶解度;光激發螢光光譜分析單壁奈米碳管的分散性與選擇性。研究顯示特定的高分子與有機溶劑組合,可以對於特定構型的單壁奈米碳管具有選擇性。在光電元件的部分,此實驗利用P3HT分散單壁奈米碳管於不同溶劑中,討論不同溶劑對於P3HT與單壁奈米碳管之間結晶性的影響,因此可以更瞭解P3HT與單壁奈米碳管的系統。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

摘要 本論文分為兩部分:第一部分探討非鏡像選擇性胺化反應,第二部分則探討鏡像1,4-加成反應。 第一部分利用本實驗室開發的對掌輔助劑129控制立體化學中心,製備不同取代的對掌N-醯胺衍生物134,以四氫呋喃做為溶劑、在-78 oC條件下,選用KHMDS及LHMDS當鹼試劑,DBAD為親電子受質,進行a-胺化反應,所建構之立體化學中心會產生反轉的現象,可得到最佳產率(90%)及非鏡像選擇性(90% de)。另外,可成功將對掌輔助劑129切除回收,得到高光學純度的羥基化合物141a。 第二部分利用本實驗室所開發之含有樟腦分子架構之L-脯胺酸有機催化劑221催化a,b-不飽和醛基化合物,進行硝基共軛加成反應。篩選出以肉桂醛及過當量的硝基甲烷(9.0 equiv)為起始物、氯仿為溶劑及室溫的條件下,在5 mol%之催化劑221及添加5 mol%的苯甲酸共同催化反應,可得到最佳之產率(65%)及鏡像超越值(80%)。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

針對乙醇在一系列以CeO2 及 SiO2 為載體的觸媒上之吸附和轉化現象進行研究以進一步了解乙醇的重組反應。首先製備出這一系列的觸媒,並對其進行氮氣表面吸脫附、X光粉末繞射、 溫度程序控制還原、乙醇脈衝吸附、溫度程序控制脫附、乙醇脈衝反應等鑑定及測試。實驗結果顯示,經氧化處理的觸媒表面表現出較還原處理的觸媒更高的乙醇吸附量,且其吸附機制似乎亦有所不同。乙醇重組反應在單純的CeO2表面上即可能完成。在Pt/SiO2中Pt的參與作用僅在於促進表面吸附物種的分解,藉此加速反應進行的流程。但就長時間作用而言,Pt的存在會造成觸媒反應性衰減。Pt/SiO2和Pt/Ce/SiO2均表現出較預期良好的乙醇轉化能力,且沒有出現觸媒反應性衰減的情形。在Pt/SiO2表現出可觀乙醇吸附及轉化能力的同時,單純SiO2和diluted Pt (混合PtO2和SiO2)的表面上似乎完全沒有乙醇吸附。因此在Pt/SiO2上觀察到的吸附及轉化能力可能與Pt及SiO2之間的連結作用有關。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

在本篇論文,是以電化學偶氮化還原的方式在基材表面上電鍍含有苯胺官能基的長碳鏈分子,選用的基材為金基材和矽晶片。藉由電化學,X光-光電子能譜圖,全反射式紅外線光譜來鑑定基材表面上的分子,以及使用CAFM來量測導電特性。 實驗結果顯示,我們成功以電化學電鍍的方式可以在金表面上鍵結長碳鏈苯胺分子;隨著電鍍的樣品分子碳鏈越長,交界處的電阻會呈現指數性的增大,測樣品表面的導電性質時,當施加在探針的力越大,所量測到的電流值就會越大,並且是呈現指數性的劇增。利用Simmons equation計算出的length-dependent decay parameter, β為0.27 Å-1(電壓為± 1.5 V)。將電化學電鍍製成的樣品與以自組裝薄膜方式製成的樣品相比較,會發現以電鍍方式製成的樣品穩定性較好。另外,在矽晶片上以電鍍方式製作的樣品,則是會受到電鍍溶液中溶劑為水溶液的影響,使得矽晶片表面也同時有形成二氧化矽,讓樣品在矽晶片上的導電特性難以被明確測量到。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

在本篇論文,我們利用氬電漿(argon plasma)轟擊高定向熱解石墨(HOPG)表面而產生一均勻的表面缺陷。而這些均勻的缺陷會有較高的表面能(surface energy),使得鎘奈米粒子(Cadmium nanoparticles)較能夠均勻的沉積於石墨基材上;而無經過氬電漿轟擊的石墨表面,其本身因具有自然的斷面缺陷(edge),所以在沉積奈米粒子時容易對石墨表面具有選擇性,而傾向於沉積在斷面缺陷上。由實驗中發現,利用氬電漿轟擊石墨表面最佳的氣體壓力在8-20 mtorr之間;若氣體壓力過高,則會造成石墨表面的缺陷不緻密均勻,反而造成奈米粒子在石墨表面上的聚集。在電化學沉積過程中,我們發現溶解在電解液中的氧分子會在電極表面被還原成氫氧根離子(Hydroxide anions)而與鎘離子(cadmium cations)產生不溶性的氫氧化鎘(Cd(OH)2)奈米粒子;這個過程將會有效地增加石墨表面奈米粒子的密度。爾後,我們利用硫化氫氣體(H2S)與石墨表面上的氫氧化鎘或鎘奈米粒子在高溫(300℃)條件下進行取代反應生成硫化鎘奈米粒子(CdS nanoparticles);再利用X光光電子能譜儀(X-ray photoelectron spectroscopy)研究其表面化學組成之變化。其中我們觀察鎘元素束縛能之變化以及硫元素XPS強度的改變來證明硫化鎘奈米粒子反應在300℃下於10-15分鐘完成。此外,我們利用高解析度穿透式電子顯微鏡(High-resolution transmission microscopy)觀察硫化鎘奈米粒子之結晶性與其晶格影像。在穿透式電子顯微影像上可得知此硫化鎘奈米粒子為立方堆積(cubic-phase)而且是明顯的中空結構奈米粒子。中空結構之硫化鎘奈米粒子在先前文獻中已經被證實以及研究過,造成中空結構之原因被稱為Kirkendall effect。最後,我們利用低溫光子激發光光譜儀測量硫化鎘奈米粒子之光學性質。在實驗中可得到此硫化鎘奈米粒子之放光光譜於486 nm (2.55 eV)有一明顯的放光波峰,此放光波峰可解釋為能隙所造成的放光。而我們在相對較長波長498 nm (2.49 eV)之位置有發現一不明顯的放光波峰,而此可被解釋為奈米粒子表面缺陷所造成之放光。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

分子自組裝技術(SAM)廣泛的應用於科學領域中,現今的有機場效電晶體廣泛的應用了分子自組裝技術,其中包括了絕緣層、功函數的調控以及分子自組裝場效電晶體等等。 在本研究主題中,我們經由少數化學修飾的步驟,成功的製造了高品質並以碳六十為終端的單層分子自組裝。表面的化學組成由X光光電子能譜儀來鑑定。而單層分子的品質,由原子力顯微鏡、接觸角量測、橢圓儀以及X光反射率來確認。 以碳六十為終端的單層分子自組裝由下列的幾個步驟完成:首先,將終端為溴的分子(ω-BHTS)自組裝到矽晶圓表面、將終端溴取代成疊氮以及碳六十稼接到疊氮形成aziridine。選擇十七個亞甲基團(methylene group)是為了能夠與OTS做比較。 最後,我們利用熱蒸鍍法將碳六十蒸鍍到下列製備的表面:乾淨的二氧化矽表面、氧電漿處理的二氧化矽表面、甲基團終端的分子自組裝、疊氮基團終端的分子自組裝以及碳六十基團終端的分子自組裝。經由改變表面的狀態,使得控制表面能變成可能。不同的成長機制,包括Volmer—Weber、Stranski—Krastanov 以及Frank—van-der-Merwe成長,都可分別在這些不同的表面中觀察的到。我們接著提出了碳六十分子在這些不同表面能的表面中,不同成長的機制。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

有機催化劑應用在不對稱Michael加成反應為碳-碳鍵生成中重要的一環,常見其應用於天然物或藥物分子合成。利用有機催化劑進行不對稱Michael加成反應,是一符合經濟效益與環保的不對稱合成方法,設計合成L-脯胺酸衍生之有機催化劑逐漸成為研究重要的議題。本實驗室以L-脯胺酸衍生之有機催化劑進行不對稱Michael加成反應,得到良好的產率88-90%,鏡像超越值77-95% ee。 本篇論文結合樟腦架構與反式-4-羥基-L-脯胺酸設計合成新穎有機催化劑96-103。以β-硝基苯乙烯與異丁醛為反應物,進行不對稱有機催化Michael加成反應,篩選最佳有機催化劑、改變溶劑種類、催化劑的劑量數、更換取代基,探討對產物鏡像選擇性的影響,篩選出在室溫下以甲苯為溶劑,添加20 mol%催化劑101為最適宜反應條件,產率為90 %,鏡像超越值達93% ee。取代基若為環戊醛於0oC下反應結果最佳,產率可達85%,鏡像超越值高達94% ee,以不同的β-硝基乙烯與環戊醛為起始物,可得到產率最高為96%,鏡像超越值最高可達99% ee。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。