透過您的圖書館登入
IP:3.129.23.30

臺灣師範大學物理學系學位論文

國立臺灣師範大學,正常發行

選擇卷期


已選擇0筆
  • 學位論文

以脈衝雷射蒸鍍法在c方向藍寶石基板上製備氧化鏑鋅薄膜,並討論其結構、光學、磁光與電性特性。分析X光繞射光譜與拉曼光譜,並沒有產生其他晶相,隨摻雜濃度增加,晶粒尺寸變小,晶格常數變化不大。光致螢光光譜顯示,純氧化鋅有很強的近能隙發光,隨摻雜濃度增加,近能隙發光強度漸弱,缺陷發強度增強,主要缺陷為氧空缺、鋅空缺與鋅間隙。磁光光譜可看出,所有薄膜呈順磁性,與SQUID量測結果相同,Verdet constant大致隨波長增長而漸弱;其中缺陷所對應的發光波長,Verdet constant 與摻雜比例做圖,摻雜濃度10%響應為最強。量測電流-電壓曲線圖得知所有電極都為歐姆接觸。使用Van der Pauw法量測氧化鏑鋅薄膜的電阻率數值在0.078 mΩ·cm與277.72 mΩ·cm之間。霍爾效應檢測顯示氧化鋅為n型半導體,1%及5%的氧化鏑鋅薄膜為p型半導體,載子濃度在7.89×1018 cm-3與5.32×1022 cm-3之間,遷移率在4.3×10-4 cm2/Vs與35.13 cm2/Vs之間。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

本研究主旨為探討探究式教學於技術型高中物理課程中的影響與改變,研究對象為台北技術型高中多媒體設計科學生,以熱學為主題,對照其會考自然成績、課程前測驗及課程結束測驗與段考成績,並加以訪談、問答做為參考依據,素養教學過程中包含演示教學、實驗探究,透過學生的討論、發表、修正等過程,使其能夠更深刻的學習熱學相關知識。研究流程為課程開始前先與了解學生背景知識,利用訪談、討論、前測、會考成績等當作依據,研究分析包含,學生後測試題的選擇答案量化分析,與作答手寫部分的質性分析,最後以教學經驗豐富的十五位老師問卷調查,作為輔助依據。 研究結果顯示,學生一開始對於國中學習的熱學部分概念較不熟悉,包含熱平衡、熱能轉換、物質三態變化等,跟學生訪談後發現對於學習上的困難之處,利用課程設計解決學生容易在課堂中發生的困難點,依循素養教學過程的訓練後,依據學習後的測驗分析,發現學生對於熱學模糊的概念能夠更精準的描述,思考邏輯的梳理能夠符合科學原理概念,推論出正確及合理的結果,並且在課堂中學習團隊合作、討論、發表、提問等能力態度的建立。

  • 學位論文

我們使用原子力顯微鏡(atomic force microscopy, AFM)及其衍伸技術研究了二氧化矽基板上的單層石墨烯表面的接觸摩擦起電效應。我們藉由使用施加了偏壓的原子力顯微鏡探針摩擦單層石墨烯表面,並觀察摩擦之後的石墨烯表面電位會如何隨著所加偏壓的大小、極性、環境溼度與石墨烯的結構缺陷而變化。我們發現在摩擦的過程中,探針上的電荷可以經由石墨烯的結構缺陷穿隧進入並累積在石墨烯與下層二氧化矽基板之間。我們使用克氏探針表面電位顯微鏡(Kelvin Probe Force Microscopy, KPFM)量測表面電位以監測累積電荷隨時間的改變。當我們使用+5V偏壓施加在探針上摩擦石墨烯後,摩擦與未摩擦區域表面電位差可以高達500mV,並表面電位會隨著時間逐漸降低,於3500分鐘後約穩定在150mV。然而,當我們在摩擦時使用負偏壓時,摩擦後的表面電位差會快速在500分鐘後消散到接近零,然後漸漸轉為正電位。這是因為當我們使用加了偏壓的原子力顯微鏡探針在環境條件下摩擦單層石墨烯時,其表面會產生摩擦化學反應,在石墨烯表面產生化學官能基,進而影響到摩擦後的表面電位。此外,我們也使用了氬氣電漿來處理石墨烯,以產生不同結構缺陷程度的單層石墨烯樣品。我們並發現結構缺陷愈多的石墨烯,其表面電位在摩擦後消散的愈快。我們的研究可以將石墨烯應用到新穎的奈米摩擦發電機(triboelectric nano-generators, TENG)之中。

  • 學位論文

本文為延續研究,主要在探討摻雜釓的氧化鋅薄膜在室溫的光致螢光光譜和法拉第磁光效應。釓的摻雜莫耳濃度0%到20%,光譜的測量範圍是340 nm至700 nm,磁場介於±900 mT之間。 摻雜不同濃度釓元素的氧化鋅薄膜都會產生鋅空缺,發出Ec→VZn-能階躍遷的螢光,此外除5%薄膜外,各薄膜亦同時有鋅間隙及氧間隙。當摻雜比例上升超過5%時,非本質發光會主宰PL光譜且光譜外型明顯改變。各樣品的總法拉第旋轉角基板加上薄膜的總合,和外加磁場成負斜率的直線關係。單獨觀察基板薄膜亦是如此。基板及薄膜的韋爾代常數介於-0.01287至-0.00399及-5.96000到6.74000 rad/mT.m之間,且隨波長增長量值減小,多數皆為負值,唯5%摻雜薄膜於380 nm到540 nm間為正值。在波長380、420、480及640 nm之韋爾代常數對於摻雜比有先增後減的現象,並在5%時有最大值。此結果有助於找到薄膜對波長在法拉第效應上的最高敏感度。總合兩光譜結果,可發現除摻雜元素可造成磁性,進而改變法拉第磁光效應外,缺陷對薄膜的磁性及法拉第磁光效應亦有相當的影響。

  • 學位論文

我們利用了原子力顯微鏡研究「正丁硫醇官能化的聚苯胺」,針對聚苯胺薄膜的分子排列有序程度與其彈性模量和摩擦特性的關係進行探討。我們使用攪拌聚苯胺溶液的方式來控制聚苯胺薄膜之分子排列的有序程度,並每攪拌24小時抽取出聚苯胺溶液滴製在基板上以製成聚苯胺薄膜以供研究。聚苯胺長鏈分子在溶液中很容易自我糾纏成團,而攪拌時溶液中所產生的剪切力則可以將自我糾纏的聚苯胺分子拉展開來。因此,在我們滴製聚苯胺薄膜樣品的過程中,已伸展開的長鏈聚苯胺分子便更能在溶劑揮發的時候,自行排列成有秩序的結構。我們也利用了「X光繞射」和「掃描電子顯微鏡」確認了聚苯胺薄膜的分子排列結構,並確定了聚苯胺薄膜在攪拌時間為72小時的時候,具有最有秩序的分子排列結構。隨後,我們使用原子力顯微鏡的「峰值力定量奈米力學應用模式」和「側向力顯微術」測量了聚苯胺薄膜的表面形貌、彈性模量、吸附力變化以及樣品與探針間的動摩擦係數。我們發現,分子排列結構越有秩序的聚苯胺薄膜,其彈性模量越大且動摩擦係數越小。這是因為彈性模量較大的聚苯胺薄膜,其分子排列結構較為緻密,因此當原子力顯微鏡的探針施壓在其表面時所產生的形變程度便較小、對探針所產生的能量耗散也較小,進而導致側向力顯微術測量出較小的動摩擦係數。反之,彈性模量較小也就是較軟的聚苯胺薄膜,其所被測量出的動摩擦係數則較大。綜觀所究,我們成功證實可以利用「調整攪拌時間」的方式控制聚苯胺薄膜結構分子排列的有序程度,進而調控聚苯胺薄膜的彈性及摩擦性質。

本文將於2026/01/01開放下載。若您希望在開放下載時收到通知,可將文章加入收藏
  • 學位論文

@_@吸光層與電洞傳輸層之間的界面不僅決定了能帶匹配和電荷傳輸的問題,還影響了鈣鈦礦的生長,因此選擇合適的電洞傳輸層有其必要性。本篇主要透過電洞傳輸層改質來提高 p-i-n 結構鈣鈦礦太陽能電池之效率,首先將 P3CT 與鹼金屬之合成取代傳統 PEDOT:PSS 作為電洞傳輸層,分為四種材料:P3CT-Na、P3CT-K、P3CT-Cs、P3CT-Rb,再分別以厚度 ( thickness ) 、溶液配置時間 ( aging time )、退火溫度 ( annealing temperature ) 三種條件做元件效率最佳化之分析,並透過 X射線繞射分析儀 (XRD) 及原子力顯微鏡 (AFM) 觀察不同退火溫度條件下薄膜晶體結構與形貌之變化,而以 P3CT-Na 做為電洞傳輸層比 PEDOT:PSS 最高可提升百分之四十的效率,並在 P3CT-Na與 P3CT-K 元件可達到正掃 17%、反掃 18% 的效率。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

@_@本論文共分三個部分:1.鈣鈦礦量子點-PCL(polycaprolactone)複合材料;2.CdSe量子點發光二極體的電洞注入層及電洞傳輸層之參雜;3.PbBr2及醋酸鉛二維晶體之研究。 第一部分,我們合成CsPbBr3鈣鈦礦量子點,因為量子點具有量子侷限效應,所以我們藉由調控量子點粒徑大小得到460nm,到515nm光波長的CsPbBr3鈣鈦量子點。由於鈣鈦礦量子點在大氣下不易儲存,因此將量子點與高分子材料PCL混合,做出複合材料,研究結果顯示,由於我們用高分子材料包覆量子點,讓鈣鈦礦量子點在大氣環境下,能夠保存更久的時間。 第二部分,我們使用全溶液製程製作CdSe的量子點發光二極體。在電洞注入層poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)參雜不同比例的P105分散劑,找到PEDOT:PSS參雜的最佳條件後,接著電洞傳輸層poly(9-vinylcarbazole)(PVK)參雜1,1-Bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC)接著加上Bis[3,5-di(9H-carbazol-9-yl)phenyl]diphenylsilane (SimCP2),依序對這一系列參雜不同比例,觀察對發光二極體元件的影響。電洞注入層最佳參雜比例使表面粗糙度從3.1853nm下降到2.0144nm,而元件的量子效率也從2.23%達到3.33%,結果表明適當得參雜可以有效的改善元件載子的注入能力。 最後,我將PbBr2及醋酸鉛在二氧化矽的基板上生長二維材料晶體,並改善製程,使得我可以得到較大或較薄的晶體,其中,醋酸鉛晶體可以長到約6um的六角形晶體,我使用AFM觀察其厚度,最薄到達20nm。接著,我使用其他材料(MABr、MAI)個別與兩種晶體反應,使我最後能得到鈣鈦礦的薄片晶體。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

@_@本論文涵蓋兩種材料的研究:擁有和一般有機材料不同發光機制的新穎材料-聚集誘導放光材料 (AIE material, aggregation induced emission material) 與近年來鈣鈦礦研究的新領域-二維結構與RPPs結構 (Ruddlesden-Popper perovskites, RPPs)。 在AIE材料的研究中,本文選擇HPS (1,2,3,4,5-hexaphenylsilole) 作為研究對象,旨在利用其特性以溶液製程方式製作OLED (organic light-emitting diode, OLED)。在選擇材料適當的厚度後,透過「引入電洞傳輸層TFB (Poly(9,9-dioctylfluorene-alt-N-(4-sec-butylphenyl)-diphenylamine))」與「烘烤材料使其結晶程度提升」兩種方式優化元件量子效率,並以光學顯微鏡、螢光量子產率(Photoluminescence quantum yield, PLQY)、電性圖分析造成其效率上限之成因。與單純發光層上下接出陰陽兩極的結構相比,元件的最佳製程條件能使效率提升10倍。 在二維鈣鈦礦的研究中,本文透過原創的長晶方式,實現在矽基板上快速製造大量的〖 PbI〗_2 單晶薄片。單晶薄片厚度最薄可達2奈米,並能透過溶液二步法將其轉換成單層至數層的鈣鈦礦與鈣鈦礦RPPs結構。由PL圖譜可知,薄片鈣鈦礦會因量子侷限效應的關係發生藍移,且〖 PbI〗_2 經由二步法轉換成RPPs結構後的PL特徵與長鏈陽離子包覆單層晶格 (即n=1) 的情況相符,是一種低成本製作大量低維數鈣鈦礦的方式。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

本次研究探討二維三角晶格鍵結無序自旋-1/2反鐵磁海森堡模型,想要瞭解其在幾何阻挫性與鍵結無序紊亂的交互影響下系統基態特性的變化。本論文利用張量網路演算法將量子態與哈密爾頓算符分別以矩陣乘積態與矩陣乘積算符表示,再運用密度矩陣重整化群找出量子系統的基態並計算系統的序參數平方子晶格磁化強度(squared sublattice magnetization) $m_s^2$與三子晶格鐵磁序參數(three-sublattice ferromagnetic order parameter) $m_o$。我們發現序參數對鍵結無序紊亂具有穩健性,推測序參數應該只會在鍵結無序紊亂強度為無窮大時才會消失。未來預計計算更大系統尺寸的基態性質,並進行數據擬合。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。