Translated Titles

Sound and Vibration Waves of Gravel Due to Shearing and the Application in Disaster Prevention




張惠文(Huei-Wen Chang);陳柏翰(Po-Han Chen);李嶸泰(Jung-Tai Lee);胡天騏(Tien-Chi Hu)

Key Words

剪力試驗 ; 音波 ; 振波 ; 加速度 ; 顯著頻率 ; Shear test ; Sound wave ; Vibration ; Acceleration ; Apparent frequency



Volume or Term/Year and Month of Publication

2卷2期(2013 / 09 / 01)

Page #

55 - 77

Content Language


Chinese Abstract

本研究以直接剪力試驗儀進行礫石材料之剪動試驗,量測試驗時礫石所產生之音波與振波,探討其訊號之處理與判讀方式,藉以瞭解礫石受剪時,尤其是降伏後至破壞時之音波與振波特性。為找出礫石之音波與振波之顯著頻率分佈範圍,本研究確立了頻譜比對法,可用以判斷音波與振波之變化,訂定顯著頻率,並予以濾波。經比對後,發現在15 Hz範圍內礫石受剪所發出音波之數值明顯增高,可視為其顯著頻率。利用此法可方便且迅速地找出顯著頻率。另外亦發現此主要頻率不因含水量之多寡而有所變動。至於振波加速度頻譜圖亦有類似之性質,說明了振波加速度與音波間有密切之相關性,且相較於音波訊號,加速度訊號較不易衰減,可與音波訊號互相結合,輔助判斷,以為防災預警之用。

English Abstract

This research performed a series of direct shear tests of gravel material to study the properties of shear strength, sound waves and vibration waves. A spectrum comparison method of waves is proposed in this paper to distinguish and to filter the sound waves and vibration waves generated in the process of shearing. According to the results of experiments, it is found that within the area smaller than 15 Hz, the magnitude of sound waves increased apparently compared to that of background noise and this can be seen as the apparent frequency or main frequency of this gravel material. The magnitude within this frequency area varied slightly in spite of the variation of water content. There are similar properties between the spectrum of acceleration of vibration waves and the spectrum of sound waves. This shows that there exists a close relationship between sound waves and vibration waves. Conversely, the acceleration signal does not decrease apparently, so it can be combined with the sound signal to distinguish the yielding and failure of gravel material.

Topic Category 基礎與應用科學 > 大氣科學
工程學 > 市政與環境工程
  1. 行政院環保署,2010,〈噪音原理防治材料簡介手冊〉。2013年2月1日,摘錄自http://ncs.epa.gov.tw/DD/DD06/990107_1.pdf
  2. Dixon, N.,Hill, R.,Kavanagh, J.(2003).Acoustic emission monitoring of slope instability: Development of an active waveguide system.Geotechnical Engineering,156,83-95.
  3. Itakura, Y.,Kamei, N.,Takahama, J. I.,Nowa, Y.(1997).Real time estimation of discharge of debris flow by an acoustic sensor.14th IMEKO World Congress: New Measurements- Challenges and Visions,Tampere, Finland:
  4. Itakura, Y.,Taniguchi, S.,Miyamoto, K.,Shimokawa, E.(1994).Acoustic sensor for detecting the occurrence of debris flows.Variability in stream erosion and sediment transport,Oxfordshire, England:
  5. Koerner, R. M.,McCabe, W. M.,Lord, A. E.(1981).Acoustic emission behavior and monitoring of soils.Acoustic emissions in geotechnical engineering practices,Baltimore, MD:
  6. 吳銘德、周丹(1993)。探測岩石破裂的聲音以確定人工裂縫的方法。國外測井技術,8(6),19-22。
  7. 呂盈慧(2011)。碩士論文(碩士論文)。國立中央大學土木工程學系。
  8. 林榮渠(2010)。關於大地工程與安全監測。臺北市:財團法人三聯科技教育基金會。
  9. 黃清哲、孫坤池、陳潮億、尹孝元(2007)。不同型態土石流地聲特性之實驗研究。中華水土保持學報,38(4),417-430。
  10. 薛景壕(2010)。碩士論文(碩士論文)。國立中央大學土木工程學系。
Times Cited
  1. 胡天騏(2014)。部分飽和砂岩滑動與破壞之波動特性。中央大學土木工程學系學位論文。2014。1-187。
  2. 彭聖祐(2015)。砂岩摩擦降伏後之潛變特性。中央大學土木工程學系學位論文。2015。1-155。