Title

第三代太陽能電池的設計製作和應用

Translated Titles

Design, Fabrication, and Application of the Third-Generation Photovoltaic Cells

DOI

10.6342/NTU.2010.00120

Authors

陳東藝

Key Words

激發態分子內 ; 質子轉移 ; 巨大異質接面 ; 太陽能電池 ; 固態染敏化 ; 氟取代 ; proton transfer ; bulk heterojunction ; solar cells ; solid state ; dye sensitized ; fluorine substitution

PublicationName

臺灣大學化學研究所學位論文

Volume or Term/Year and Month of Publication

2010年

Academic Degree Category

博士

Advisor

周必泰

Content Language

英文

Chinese Abstract

由於全球對能源的需求,使得再生能源,尤其是太陽能的技術逢勃發展。雖然市面上的太陽能產品大都以單晶、多晶和非晶矽無機太陽能電池產品為主,但其成本始終無法達到美國能源部發佈的元件成本的目標 (低於0.3USD/W),因此目前趨勢朝著具低成本的第三代太陽能電池之方向發展。而第三代太陽能電池則是利用有機材料,如有機共軛染料、有機共軛高分子,分別應用於染敏化太陽能電池 (Dye sensitized solar cells,DSSCs) 和巨大異質接面太陽能電池 (Bulk heterojunction solar cells, BHJ solar cells)。在此篇論文,我們專注於此兩種太陽能電池的研究,從染料的設計及製程的改善,在太陽能元件的效率,有顯著的改善。共有三個主題,分別如下: 1. Design and Synthesis of Trithiophene-Bound Excited-State Intramolecular Proton Transfer Dye: It’s Enhancement on the Performance of Bulk Heterojunction Solar Cells 三噻吩激發態分子內質子轉移染料的設計與合成:於巨大異質接面太陽電池效能的改善 1. Conceptual Design of Dye Sensitized Solar Cell toward Recognition; A Paradigm on Metal Ion Recognition 利用染料化太陽能電池的概念於金屬離子之偵測 2. Organic Dyes with Remarkably High Absorptivity; All Solid-State Dye Sensitized Solar Cell and Role of Fluorine Substitution 具高吸收係數有機染料;全固態染敏化太陽能電池及氟取代的重要性

English Abstract

The need to develop inexpensive renewable energy sources continues to stimulate new approaches to production of efficient, low-cost photovoltaic devices. Although inorganic semiconductors (silicon, amorphous silicon, gallium arsenide, and sulfide salts) have been the primary focus, the photosensitivity and the third generation of photovoltaic devices made with organic materials have also been explored, including conjugated polymers, organic dyes, stacked discostic liquid crystals, and self-assembling organic semiconductors. In this dissertation, we study three topics as follow about the third generation of solar cells: 1. Design and Synthesis of Trithiophene-Bound Excited-State Intramolecular Proton Transfer Dye: It’s Enhancement on the Performance of Bulk Heterojunction Solar Cells 2. Conceptual Design of Dye Sensitized Solar Cell toward Recognition; A Paradigm on Metal Ion Recognition 3. Organic Dyes with Remarkably High Absorptivity; All Solid-State Dye Sensitized Solar Cell and Role of Fluorine Substitution

Topic Category 基礎與應用科學 > 化學
理學院 > 化學研究所
Reference
  1. (12) Wu, I. C.; Lai, C. H.; Chen, D. Y.; Shih, C. W.; Wei, C. Y.; Ko, B. T.; Ting, C.; Chou, P. T. J. Mater. Chem. 2008, 18, 4297-4303.
    連結:
  2. (13) (a) Frey, W.; Laermer, F.; Elasesser, T. J. Phys. Chem. 1991, 95, 1039110395.(b) Schwartz, B. J.; Peteanu, L. A.; Harris, C. B. J. Phys. Chem. 1992, 96, 3591-3598. (c) Chou, P.-T.;.Chen, Y.-C; Yu, W.-S.; Chou, Y.-H.; Wei, C.-Y.; Cheng, Y.-M. J. Phys. Chem. A 2001, 105, 1731-1740.; (d) Paterson, M. J.; Robb, M. A; Blancafort, L.; DeBellis, A. D. J. Am. Chem. Soc. 2004, 126, 2912-2922. (e) Chen, K.-Y.; Cheng, Y.-M.; Lai, C.-H.; Hsu, C.-C.; Ho, M.-L.; Lee, G.-H.; Chou, P.-T. J. Am. Chem. Soc. 2007, 129, 4534-4535.
    連結:
  3. (17) Chou, P. T.; Chen, Y. C.; Yu, W. S.; Chou, Y. H.; Wei, C. Y.; Cheng, Y. M.; J. Phys. Chem. A 2001, 105, 1731-1740.
    連結:
  4. (19) McMorrow, D.; Kasha, M. J. Phys. Chem. 1984, 88, 2235-2243.
    連結:
  5. (20) Österbacka, R.; An, C. P.; Jiang, X. M.; Vardeny, Z. V. Science, 2000, 287, 839-842.
    連結:
  6. 3 M. Grätzel, J. Photochem. Photobiol. A, 2004, 164, 3.
    連結:
  7. 7 B.C. O’Regan and F. Lenzmann, J. Phys. Chem. B, 2004, 108, 4342.
    連結:
  8. 8 R. Zhu, C-Y Jiang, B. Liu and S. Ramakrishna, Adv. Mater., 2009, 21, 994.
    連結:
  9. 9 J. Wu, S. Hao, Z. Lan, J. Lin, M. Huang, Y. Huang, P. Li, S. Yin and T. Sato, J. Am. Chem. Soc., 2008, 130, 11568.
    連結:
  10. 11 J.-H. Yum, D. P. Hagberg, S.-J. Moon, K. M. Karlsson, T. Marinado, L. Sun, A. Hagfeldt, Md. K. Nazeeruddin and M. Grätzel, Angew. Chem. Int. Ed., 2009, 48, 1576.
    連結:
  11. 14 Z. Ning and H. Tian, Chem. Commun., 2009, 5483.
    連結:
  12. 16 B. McMahon, S. Mitchell, H. R. Brady, C. Godson, Trends Pharmacol. Sci. 2001, 22, 391.
    連結:
  13. 17 L. Kavan and M. Gratzel, Electrochimica Acta., 1995, 40, 643.
    連結:
  14. (1) Silvestri, F.; Irwin, M. D.; Beverina, L.; Facchetti, A.; Pagani, G. A.; Marks, T. J. J. Am. Chem. Soc. 2008, 130, 17640-17641.
  15. (2) Liu, Z.; Liu, Q.; Huang, Y.; Ma, Y.; Yin, S.; Zhang, X.; Sun, W.; Chen, Y. Adv. Mater. 2008, 20, 3924-3930.
  16. (3) Yip, H. L.; Hau, S. K.; Baek, N. S. ; Ma, H. ; Jen, A. K. Y. Adv. Mater. 2008, 20, 2376-2382.
  17. (4) Peet, J. ; Kim, J. Y. ; Coates, N. E. ; Ma, W. L. ; Moses, D. ; Heeger, A. J. ; Bazan, G. C. Nature Materials 2007, 6, 497-500.
  18. (5) Walker, B. ; Tamayo, A. B.; Dang, X. D. ; Zalar, P. ; Seo, J. H. ; Garcia, A. ; Tantiwiwat, M.; Nguyen, T. Q. Adv. Funct. Mater. 2009, 19, 3063-3069.
  19. (6) Walker, B. ; Tamayo, A. B.; Dang, X. D. ; Zalar, P. ; Seo, J. H. ; Garcia, A. ; Tantiwiwat, M.; Nguyen, T. Q. Adv. Funct. Mater. 2009, 19, 3063-3069.
  20. (7) Kim, Y.; Cook, S.; Tuladhar, S.; Choulis, S. A.; Nelson, J.; Durrant, J. R.; Bradley, D. D. C.; Giles, M.; Mcculloch, I.; Ha, C.-S.; Ree, M. Nat. Mater. 2006, 5, 197-203.
  21. (8) (a) Padinger, F.; Rittberger, R. S.; Sariciftci, N. S. Adv. Funct. Mater. 2003, 13, 85-88. (b) Li, G.; Shrotriya, V. ; Yao, Y.; Yang, Y. J. Appl. Phys. 2005, 98, 043704. (c) Ma, W.; Yang, C.; Gong, X.; Lee, K.; Heeger, A. J. Adv. Funct. Mater. 2005, 15, 1617-1622. (d) Kim, Y.; Choulis, S. A.; Nelson, J.; Bradley, D. D. C.; Cook, S.; Durrant, J. R. Appl. Phys. Lett. 2005, 86, 063 502 (e) Li, G.; Yao, Y.; Yang, H.; Shrotriya, V.; Yang, G.; Yang, Y. Adv. Funct. Mater. 2007, 17, 1636-1644.
  22. (9) Schilinsky, P.; Asawapirom, U.; Scherf, U.; Biele, M.; Brabec, C. J. Chem. Mater. 2005, 17, 2175-2180.
  23. (10) (a) Yamamoto, T.; Komarudin, D.; Arai, M.; Lee, B.-L.; Suganuma, H.; Asakawa, N.; Inoue, Y.; Kubota, K.; Sasaki, S.; Fukuda, T.; Matsuda, H. J. Am. Chem. Soc. 1998, 120, 2047-2058. (b) Sirringhaus, H.; Brown, P. J.; Friend, R. H.; Nielsen, M. M.; Bechgaard, K.; Langeveld-Voss, B. M. W.; Spiering, A. J. H.; Janssen, R. A. J.; Meijer, E. W.; Herwig, P.; de Leeuw, D. M. Nature, 1999, 401, 685-688.
  24. (11) McCulloch, I.; Heeney, M.; Bailey, C.; Genevicius, K.; Macdonald, I.; Shkunov, M.; Sparrowe, D.; Tierney, S.; Wagner, R.; Zhang, W.; Chabinyc, M. L.; Kline, R. J.; McGehee, M. D.; Toney, M. F. Nat. Mater. 2006, 5, 328-333.
  25. (14) (a) Yu, W.-S.; Cheng, C.-C.; Cheng, Y.-M.; Wu, P.-C.; Song, Y.-H.; Chi, Y.; Chou, P.-T. J. Am. Chem. Soc. 2003, 125, 10800-10801. (b) Kijak, M.; Nosenko, Y.; Singh, A.; Thummel, R. P.; Waluk, J. J. Am. Chem. Soc. 2007, 129, 2738-2739.
  26. (15) (a) Kosower, E. M.; Huppert, D. Annu. Rev. Phys. Chem. 1986, 37, 127-156. (b) Formosinho, S. F.; Arnaut, L. G. J. Photochem. Photobiol., A: Chem. 1993, 75, 21-48. (c) Scheiner, S. J. Phys. Chem. A., 2000, 104, 5898-5909. (d) Waluk, J. Acc. Chem. Res., 2003, 36, 832-838.
  27. (16) (a) Parsapour, F.; Kelley, D. F. J. Phys. Chem., 1996, 100, 2791-2798. (b) Sengupta, P. K.; Kasha, M. Chem. Phys. Lett., 1979, 68, 382-385. (c) Kasha, M. J. Chem. Soc., Faraday Trans. 1986, 82, 2379-2392. (d) McMorrow, D.; Kasha, M. J. Phys. Chem. 1984, 88, 2235-2243. (e) Schwartz, B. J.; Peteanu, L. A.; Harris, C. B. J. Phys. Chem. 1992, 96, 3591-3598. (f) Brucker, G. A.; Kelley, D. F. J. Phys. Chem. 1988, 92, 3805-3809.
  28. (18) Kim, K.; Carroll, D. L.; Liu, J.; Namboothiry, M. A. G. App. Phys. Lett., 2007, 90, 163511.
  29. (21) Brown, P. J.; Thomas, D. S.; Köhler, A.; Wilson, J. S.; Kim, J. S. Phys. Rev. B, 2003, 67, 064203.
  30. (22) Korovyanko, O. J.; Österbacka, R.; Jiang, X. M.; Vardeny, Z. V. Phys. Rev. B: Condens. Matter. 2001, 64, 235122.
  31. (23) Cornil, J.; Beljonne, D.; Calbert, J. P.; Brédas, J. L. Adv. Mater. 2001, 13, 1053-1067.
  32. (24) Brabec, C. J.; Cravino, A.; Meissner, D.; Sariciftci, N. S.; Fromherz, T.; Rispens, M. T.; Sanchez, L.; Hummelen, J. C. Adv. Funct. Mater. 2001, 11, 374-380.
  33. (25) Olson, D. C.; Lee, Y. J.; White, M. S.; Kopidakis, N.; Shaheen, S. E.; Ginley, D. S.; Voigt, J. A.; Hsu, J. W. P. J. Phys. Chem. C 2007, 111, 16640-16645.
  34. (26) von Hauff, E.; Parisi, J.; Dyakonov, V. J. Appl. Phys. 2006, 100, 043702.
  35. 1 D. M. Chapin, C. S. Fuller and G. L. Pearson, J. Appl. Phys., 1954, 25, 676.
  36. 2 Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide and L. Han, Jpn. J. Appl. Phys., 2006, 45, L638.
  37. 4 F. Gao, Y. Wang, D. Shi, J. Zhang, M. Wang, X. Jing, R. Humphry-Baker, P. Wang, S. M. Zakeerudin and M. Grätzel, J. Am. Chem. Soc., 2008, 130, 10720.
  38. 5 G. Zhang, H. Bala, Y. Cheng, D. Shi, X. Lv, Q. Yu and P. Wang, Chem. Commun., 2009, 2198.
  39. 6 H. J. Snaith, A. J. Moule, C. Klein, K. Meerholz, R. H. Friend and M. Grätzel, Nano Lett., 2007, 7, 3372.
  40. 10 L. Schmidt-Mende, U. Bach, R. Humphry-Baker, T. Horiuchi, H. Miura, S. Ito, S. Uchida and M. Grätzel, Adv. Mater., 2005, 17, 813.
  41. 12 P. Chen, J. H. Yum, F. D. Angelis, E. Mosconi, S. Fantacci, S.-J. Moon, R. Humphry-Baker, J. Ko, Md. K. Nazeeruddin and M. Grätzel, Nano Lett., 2009, 9, 2487.
  42. 13 J. Kruger, R. Plass, L. Cevey, M. Piccirelli, M. Grätzel and U. Bach, Appl. Phys. Lett., 2001, 79, 2085.
  43. 15 (a) P. Coppo, D. C. Cupertino, S. G. Yeates and M. L. Turner, J. Mater. Chem., 2002, 12, 2597. (b) P. Yan, A. Xie, M. Wei and L. M. Loew, J. Org. Chem., 2008, 73, 6587. (c) F. Babudri, G. M. Farinola, F. Naso and R. Ragni, Chem. Commun., 2007, 1003.
  44. 18 U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer and M. Gratzel, Nature, 1998, 395, 583.
  45. 19 F. Babudri, G. M. Farinola, F. Naso and R. Ragni, Chem. Commun., 2007, 1003.
  46. 20 P. Qu and G. J. Meyer, Langmuir, 2001, 17, 6720.
  47. 21 L. Ojamäe, C. Aulin, H. Pedersen and P.-O. Käll, J. Colloid Interf. Sci., 2006, 296, 71.
  48. 22 J. R. S. Brownson, M. I. Tejedor-Tejedo and M. A. Anderson, J. Phys. Chem., B 2006, 110, 12494.
  49. 23 Z.-S. Wang and H. Sugihara, Langumir, 2006, 22, 9718.
  50. 24 Md. K. Nazeeruddin, R. Humphry-Baker, P. Liska and M. Grätzel, J. Phys. Chem. B, 2003, 107, 8981.