Title

應用異階有限元素法求解二維高雷諾數自由液面流場

Translated Titles

Applying Mixed Finite Element Formulation to Two Dimensional Free Surface Problems with High Reynolds Number Case

DOI

10.6342/NTU201702607

Authors

林祈宏

Key Words

有限元素 ; 異階元素方程式 ; 任意拉格朗日-尤拉演算法 ; 自由液面流 ; 上游差分法 ; Finite Element Method ; Mixed Order Formulation ; Arbitrary Lagrangian-Eulerian ; Upwind Scheme

PublicationName

臺灣大學土木工程學研究所學位論文

Volume or Term/Year and Month of Publication

2017年

Academic Degree Category

碩士

Advisor

楊德良

Content Language

英文

Chinese Abstract

本研究探討異階方程有限元素法求解自由液面流場的可行性。首先透過兩項常見的數值實驗驗證此計算流程的準確性,接著為了模擬二維自由液面流場,導入任意拉格朗日-尤拉演算法以及一粒子追蹤法,以處理自由液面中的移動邊界以及其相對應計算場域內部網格的移動。針對高雷諾數的流場,本研究引入上風無網格法,並結合有限元去做計算。本文最後將模式應用於液面的自由震盪與巨幅晃動問題,並討論其結果與模式可行性。

English Abstract

In this thesis, we study the finite element method of velocity-pressure formulation for free surface flows. In the beginning, we examine this formulation in mixed order interpolation finite element method by two classical numerical test problems. Afterwards, with a view to simulating the two-dimensional free surface flows, a particle tracking method and the arbitrary Lagrangian-Eulerian method will be applied to our model. Furthermore, an upwind scheme combined with a meshless method will also be taken into consideration to study the flow in high Reynolds number. Finally, we demonstrate and discuss the capability of this model by free oscillation and large amplitude sloshing problems.

Topic Category 工學院 > 土木工程學研究所
工程學 > 土木與建築工程
Reference
  1. [1] Green, G. (1838). On the motion of waves in a variable canal of small depth and width. Transactions of the Cambridge Philosophical Society, 6, 457.
    連結:
  2. [5] Schwartz, L. W. (1974). Computer extension and analytic continuation of Stokes’ expansion for gravity waves. Journal of Fluid Mechanics, 62(03), 553-578.
    連結:
  3. [6] Fenton, J. D. (1979). A high-order cnoidal wave theory. Journal of Fluid Mechanics, 94(01), 129-161.
    連結:
  4. [7] Chappelear, J. E. (1961). Direct numerical calculation of wave properties. Journal of Geophysical Research, 66(2), 501-508.
    連結:
  5. [8] Dean, R. G. (1965). Stream function representation of nonlinear ocean waves. Journal of Geophysical Research, 70(18), 4561-4572.
    連結:
  6. [9] Longuet-Higgins, M. S. and Cokelet, E. D. (1976, July). The deformation of steep surface waves on water. I. A numerical method of computation. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (Vol. 350, No. 1660, pp. 1-26). The Royal Society.
    連結:
  7. [10] Baker, G. R., Meiron, D. I. and Orszag, S. A. (1982). Generalized vortex methods for free-surface flow problems. Journal of Fluid Mechanics, 123, 477-501.
    連結:
  8. [11] Peregrine, D. H. (1967). Long waves on a beach. Journal of fluid mechanics, 27(04), 815-827.
    連結:
  9. [12] Harlow, F. H. and Welch, J. E. (1965). Numerical calculation of time‐dependent viscous incompressible flow of fluid with free surface. The physics of fluids, 8(12), 2182-2189.
    連結:
  10. [13] Reddy, J. N. (1982). On penalty function methods in the finite‐element analysis of flow problems. International Journal for Numerical Methods in Fluids, 2(2), 151-171.
    連結:
  11. [14] Chorin, A. J. (1968). Numerical solution of the Navier-Stokes equations. Mathematics of computation, 22(104), 745-762.
    連結:
  12. [15] Rabier, S. and Medale, M. (2003). Computation of free surface flows with a projection FEM in a moving mesh framework. Computer methods in applied mechanics and engineering, 192(41), 4703-4721.
    連結:
  13. [16] Patankar, S. V. and Spalding, D. B. (1972). A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. International journal of heat and mass transfer, 15(10), 1787-1806.
    連結:
  14. [17] Issa, R. I. (1986). Solution of the implicitly discretized fluid flow equations by operator-splitting. Journal of computational physics, 62(1), 40-65.
    連結:
  15. [19] Nichols, B. D., and Hirt, C. W. (1973). Calculating three-dimensional free surface flows in the vicinity of submerged and exposed structures. Journal of Computational Physics, 12(2), 234-246.
    連結:
  16. [20] Chan, R. K. C. and Street, R. L. (1970). A computer study of finite-amplitude water waves. Journal of Computational Physics, 6(1), 68-94.
    連結:
  17. [21] Miyata, H. (1986). Finite-difference simulation of breaking waves. Journal of Computational Physics, 65(1), 179-214.
    連結:
  18. [23] Hirt, C. W. and Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of computational physics, 39(1), 201-225.
    連結:
  19. [24] Youngs, D. L. Time-dependent multi-material flow with large fluid distortion, Numerical Methods for Fluid Dynamics (edited by Morton, KW, Baines, MJ)(1982).
    連結:
  20. [25] Pilliod, J. E. and Puckett, E. G. (2004). Second-order accurate volume-of-fluid algorithms for tracking material interfaces. Journal of Computational Physics, 199(2), 465-502.
    連結:
  21. [26] Aulisa, E., Manservisi, S., Scardovelli, R. and Zaleski, S. (2007). Interface reconstruction with least-squares fit and split advection in three-dimensional Cartesian geometry. Journal of Computational Physics, 225(2), 2301-2319.
    連結:
  22. [27] Sussman, M., Smereka, P. and Osher, S. (1994). A level set approach for computing solutions to incompressible two-phase flow. Journal of Computational physics, 114(1), 146-159.
    連結:
  23. [29] Ramaswamy, B. and Kawahara, M. (1987). Lagrangian finite element analysis applied to viscous free surface fluid flow. International Journal for Numerical Methods in Fluids, 7(9), 953-984.
    連結:
  24. [30] Navti, S. E., Lewis, R. W. and Taylor, C. (1998). Numerical simulation of viscous free surface flow. International Journal of Numerical Methods for Heat & Fluid Flow, 8(4), 445-464.
    連結:
  25. [32] Ponthot, J. P. and Belytschko, T. (1998). Arbitrary Lagrangian-Eulerian formulation for element-free Galerkin method. Computer methods in applied mechanics and engineering, 152(1-2), 19-46.
    連結:
  26. [33] Huerta, A. and Liu, W. K. (1989). ALE formulation for large boundary motion. In Transactions on the 10th international conference on structural mechanics in reactor technology.
    連結:
  27. [34] Braess, H. and Wriggers, P. (2000). Arbitrary Lagrangian Eulerian finite element analysis of free surface flow. Computer Methods in Applied Mechanics and Engineering, 190(1), 95-109.
    連結:
  28. [35] Li, J., Hesse, M., Ziegler, J. and Woods, A. W. (2005). An arbitrary Lagrangian Eulerian method for moving-boundary problems and its application to jumping over water. Journal of Computational Physics, 208(1), 289-314.
    連結:
  29. [36] Donea, J., Huerta, A., Ponthot, J.-P. and Rodríguez-Ferran, A. 2004. Arbitrary Lagrangian–Eulerian Methods. Encyclopedia of Computational Mechanics. 1:14.
    連結:
  30. [37] Suchde, P., Kuhnert, J. and Tiwari, S. (2017). On Meshfree GFDM Solvers for the Incompressible Navier-Stokes Equations. arXiv preprint arXiv:1701.03427.
    連結:
  31. [38] Gunzburger, M. D. (2012). Finite element methods for viscous incompressible flows: a guide to theory, practice, and algorithms. Elsevier.
    連結:
  32. [39] Hughes, T. J. (2012). The finite element method: linear static and dynamic finite element analysis. Courier Corporation.
    連結:
  33. [40] Carey, G. F. and Oden, J. T. (1984). Finite elements: computational aspects (Vol. 3). Prentice Hall.
    連結:
  34. [41] Taylor, C. and Hughes, T. G. (1981). Finite element programming of the Navier-Stokes equations. Swansea, UK: Pineridge press.
    連結:
  35. [42] Sheu, T. W. and Tsai, S. F. (1999). Consistent Petrov–Galerkin finite element simulation of channel flows. International journal for numerical methods in fluids, 31(8), 1297-1310.
    連結:
  36. [43] Huyakorn, P. S., Taylor, C., Lee, R. L. and Gresho, P. M. (1978). A comparison of various mixed-interpolation finite elements in the velocity-pressure formulation of the Navier-Stokes equations. Computers & Fluids, 6(1), 25-35.
    連結:
  37. [45] Bai, W. (1997). The quadrilateral ‘Mini’finite element for the Stokes problem. Computer methods in applied mechanics and engineering, 143(1-2), 41-47.
    連結:
  38. [46] Lewis, R. W., Nithiarasu, P. and Seetharamu, K. N. (2004). Fundamentals of the finite element method for heat and fluid flow. John Wiley & Sons.
    連結:
  39. [47] Ghia, U. K. N. G., Ghia, K. N. and Shin, C. T. (1982). High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. Journal of computational physics, 48(3), 387-411.
    連結:
  40. [48] de Vahl Davis, G. (1983). Natural convection of air in a square cavity: a bench mark numerical solution. International Journal for numerical methods in fluids, 3(3), 249-264.
    連結:
  41. [49] Brooks, A. N. and Hughes, T. J. (1982). Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Computer methods in applied mechanics and engineering, 32(1-3), 199-259.
    連結:
  42. [50] Donea, J. (1984). A Taylor–Galerkin method for convective transport problems. International Journal for Numerical Methods in Engineering, 20(1), 101-119.
    連結:
  43. [52] Tabata, M. and Fujima, S. (1991). An upwind finite element scheme for high‐Reynolds‐number flows. International journal for numerical methods in fluids, 12(4), 305-322.
    連結:
  44. [53] Heinrich, J. C. and Zienkiewicz, O. C. (1977). Quadratic finite element schemes for two‐dimensional convective‐transport problems. International Journal for Numerical Methods in Engineering, 11(12), 1831-1844.
    連結:
  45. [54] Kelly, D. W., Nakazawa, S., Zienkiewicz, O. C. and Heinrich, J. C. (1980). A note on upwinding and anisotropic balancing dissipation in finite element approximations to convective diffusion problems. International journal for numerical methods in engineering, 15(11), 1705-1711.
    連結:
  46. [55] Pijaudier‐Cabot, G., Bodé, L. and Huerta, A. (1995). Arbitrary Lagrangian–Eulerian finite element analysis of strain localization in transient problems. International Journal for Numerical Methods in Engineering, 38(24), 4171-4191.
    連結:
  47. [56] Askes, H., Rodrıguez-Ferran, A. and Huerta, A. (1999). Adaptive analysis of yield line patterns in plates with the arbitrary Lagrangian–Eulerian method. Computers & structures, 70(3), 257-271.
    連結:
  48. [57] Hughes, T. J., Liu, W. K. and Zimmermann, T. K. (1981). Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Computer methods in applied mechanics and engineering, 29(3), 329-349.
    連結:
  49. [59] Giuliani, S. (1982). An algorithm for continuous rezoning of the hydrodynamic grid in arbitrary lagrangian-eulerian computer codes. Nuclear Engineering and Design, 72(2), 205-212.
    連結:
  50. [60] Sarrate Ramos, J. and Huerta, A. (2001). An improved algorithm to smooth graded quadrilateral meshes preserving the prescribed element size. Communications in numerical methods in engineering, 17(2), 89-99.
    連結:
  51. [62] Limache, A., Idelsohn, S., Rossi, R., & Oñate, E. (2007). The violation of objectivity in Laplace formulations of the Navier–Stokes equations. International journal for numerical methods in fluids, 54(6‐8), 639-664.
    連結:
  52. [63] Limache, A. C., Sánchez, P. J., Dalcín, L. D., & Idelsohn, S. R. (2008). Objectivity tests for Navier–Stokes simulations: The revealing of non-physical solutions produced by Laplace formulations. Computer Methods in Applied Mechanics and Engineering, 197(49), 4180-4192.
    連結:
  53. [64] Marchioli, C., Armenio, V., and Soldati, A. (2007). Simple and accurate scheme for fluid velocity interpolation for Eulerian–Lagrangian computation of dispersed flows in 3D curvilinear grids. Computers & Fluids, 36(7), 1187-1198.
    連結:
  54. [65] Ponthot, J. P., and Belytschko, T. (1998). Arbitrary Lagrangian-Eulerian formulation for element-free Galerkin method. Computer methods in applied mechanics and engineering, 152(1-2), 19-46.
    連結:
  55. [66] Huétink, J., Vreede, P. T., and Van Der Lugt, J. (1990). Progress in mixed Eulerian‐Lagrangian finite element simulation of forming processes. International Journal for Numerical Methods in Engineering, 30(8), 1441-1457.
    連結:
  56. [67] Ramaswamy, B. (1990). Numerical simulation of unsteady viscous free surface flow. Journal of Computational Physics, 90(2), 396-430.
    連結:
  57. [68] Mairhuber, J. C. (1956). On Haar's theorem concerning Chebychev approximation problems having unique solutions. Proceedings of the American Mathematical Society, 7(4), 609-615.
    連結:
  58. [69] Micchelli, C. A. (1984). Interpolation of scattered data: distance matrices and conditionally positive definite functions. In Approximation theory and spline functions (pp. 143-145). Springer Netherlands.
    連結:
  59. [71] Shu, C., Ding, H. and Yeo, K. S. (2003). Local radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible Navier–Stokes equations. Computer Methods in Applied Mechanics and Engineering, 192(7), 941-954.
    連結:
  60. [73] Wendland, H. (1995). Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Advances in computational Mathematics, 4(1), 389-396.
    連結:
  61. [2] Airy, G. B. (1841). Tides and waves.
  62. [3] Gerstner, F.(1809),Theorie der Wellen samt einer daraus abgeleiteten Theorie der Deichprofile, Ann. Phys., 2, 412–445.
  63. [4] Stokes, G. G. (1847). On the theory of oscillatory waves. Transactions of the Cambridge Philosophical Society, 8, 441-473.
  64. [18] Dean, R.G. and R.A. Dalrymple, 1984: Water Wave Mechanics for Engineers and Scientists, Advanced Series on Ocean Engineering, ed. Philip L.-F. Liu, World Scientific.
  65. [22] Watanabe, Y. and Saeki, H. (1970). Numerical analysis of breaking waves. WIT Transactions on Ecology and the Environment, 18.
  66. [28] Kothe, D. B. and Rider, W. J. (1995, September). Practical considerations for interface tracking methods. In Proceedings of the 6th international symposium on computational fluid dynamics, Lake Tahoe, CA (pp. 4-8).
  67. [31] Noh, W. F. (1963). CEL: A time-dependent, two-space-dimensional, coupled Eulerian-Lagrange code (No. UCRL-7463). Lawrence Radiation Lab., Univ. of California, Livermore.
  68. [44] Thomasset, F. (2012). Implementation of finite element methods for Navier-Stokes equations. Springer Science & Business Media.
  69. [51] Zienkiewicz OC and Taylor RL (2000). The Finite Element Method, Vol.3, Fluid Dynamics, Butterworth and Heinemann, Oxford.
  70. [58] Huerta, A. and Liu, W. K. (1988). Viscous flow with large free surface motion. Computer Methods in Applied Mechanics and Engineering, 69(3), 277-324.
  71. [61] Chan, Yi-Ling (2011) The interpolation Technique Based on Localized Numerical Meshless Method. Department of Civil engineering, college of engineering, National Taiwan University, Master's thesis.
  72. [70] Barnett, G. A. (2015). A robust RBF-FD formulation based on polyharmonic splines and polynomials.
  73. [72] Zhu, S. (2012). Compactly supported radial basis functions: how and why?.
  74. [74] Ching-Kai Chou (2016) Numerical simulations of thermal and fluid problems by meshless approximated finite volume method. Department of Civil engineering, college of engineering, National Taiwan University, Ph.D. research proposal.