Title

木質素磺酸鹽碳化製備木質素基碳纖維生產之研究

Translated Titles

The Production of Lignin-based Carbon Fibers from Carbonization of Lignosulfonate

Authors

顏詩軒

Key Words

木質素磺酸鹽 ; 碳化 ; 碳纖維 ; 活性碳纖維 ; 靜電紡絲法 ; Lignosulfonate ; Carbonization ; Carbon fibers ; Activated carbon fibers ; Electrospinning

PublicationName

臺灣大學森林環境暨資源學研究所學位論文

Volume or Term/Year and Month of Publication

2015年

Academic Degree Category

碩士

Advisor

張豐丞

Content Language

繁體中文

Chinese Abstract

本試驗以木質素磺酸鹽作為前驅物研發木質素基碳纖維,透過靜電紡絲法製作纖維並加以碳化,找尋其最適的碳化製程參數,並測試木質素基碳纖維之性質。結果顯示,預氧化製程以1°C/min升溫至250°C最佳,能改善纖維試片完整性並提高纖維含碳比例。碳化製程以兩階段升溫進行效果較好,其碳纖維產率提升且維持纖維試片之完整性。碳化的製程以第一階段升溫速率為關鍵,須以較慢的升溫速率進行,試驗結果顯示以1°C/min升溫速率最為合適,若高於此速率時,纖維易破損。第一階段碳化溫度則以400°C較佳,且碳纖維產率較高。而碳化第二階段試驗結果顯示,隨碳化最終溫度上升,碳纖維產率減少且纖維含碳比例則隨之增加,而電傳導率跟拉伸強度亦隨之增加。碳化第二階段之持溫時間延長會使碳纖維產率下降及纖維含碳比例上升,其中纖維含碳比例可達86.01%,電傳導率可達1388 cm/Ω。再將最佳碳化製程用於製備活性碳纖維,以CO2作為活化劑,並將製程分為一階段活化及兩階段活化。試驗結果顯示,燒失率及比表面積隨活化持溫時間延長而增加。而碳化階段及預碳化溫度為700°C時,活性碳纖維有較佳表現,其燒失率較低且比表面積較高。將兩種活化法相比,則發現兩段式活化較一段式活化效果佳,可降低燒失率且所得之比表面積明顯較高,可達643.89 m2/g。綜合以上結果所示,碳纖維製備之升溫速率為決定纖維型態及性質之關鍵。而木質素磺酸鹽經碳化及活化後,可得到良好的電傳導率及比表面積,顯示木質素基碳纖維相當值得後續的研究及開發應用。

English Abstract

This study aimed to use lignosulfonate as a precursor to develop lignin-based carbon fibrous materials and investigate producing lignin-based carbon fibers through electrospinning and subsequent carbonization. In addition, this study attempted to optimize the fiber production process and examined the properties of such carbon fibers. The results revealed that producing the fibers in a pre-oxidation process with a heating rate of 1°C/min and target temperature of 250°C can generate a favorable outcome. Specifically, the pre-oxidation enhanced the integrity and carbon content of fiber mats. Moreover, in contrast to one-phase carbonization, the two-phase carbonization process is favorable to increase fiber production and improve fiber mat integrity. According to the results, the heating rate at the first carbonization phase was crucial, and the rate of 1°C/min facilitated achieving an optimal fiber production. The produced fibers were prone to rupture at heating rates over 1°C/min. Concurrently, the target temperature of the first carbonization phase was also important; namely, 400°C rather than 300°C can assist in improving the fiber mat integrity and fiber production. In the second carbonization phase, when the final temperature was increased, the fiber production and diameter decreased, and the fiber carbon content, electric conductivity, and tensile strength increased. Moreover, an increase in the carbonization time can decrease the overall fiber production and increase fiber carbon content; consequently, the carbon content and electric conductivity could increase to 86.01% and 1388 cm/Ω, respectively. To produce activated carbon fibers, the proposed optimal carbonization process was applied using CO2 as the activation agent, and one-step and two-step activation processes were also conducted. According to the experimental study, when the activation time was prolonged, the burn-off rate and specific surface area increased; moreover, the ideal pre-carbonization temperature was 700°C. The results also suggested that two-step activation was superior to one-step activation in decreasing the burn-off and increasing the specific surface area (the maximal area was 643.89 m2/g). In summary, the proposed lignin-based carbon fibrous material can be used as a potential electronic conductor or adsorbent and is worth exploring and developing for future applications.

Topic Category 生物資源暨農學院 > 森林環境暨資源學研究所
生物農學 > 森林
生物農學 > 生物環境與多樣性
Reference
  1. 陳中屏,蕭凱仁和張孝全(2011)碳纖維技術及未來市場趨勢。尖端材料科技協會。24期;頁4–16。
  2. 張孝全,李素萍和段先緯(2013)碳纖維發展趨勢與應用(上)。工業材料雜誌。297期;頁75–82。
  3. 賀福(2010)碳纖維及石墨纖維。化學工業出版社。543頁。
  4. Alcañiz-Monge, J., D. Cazorla-Amorós and A. Linares-Solano. (1994) Effect of the activating gas on tensile strength and pore structure of pitch-based carbon fibres. Carbon. 32(7):1277-1283.
  5. Bailey, J. E., A. J. Clarke. (1971) Carbon fiber formation - the oxidation treatment. Nature. 234:529-531.
  6. Baker, D. A. and T. G. Rials. (2013) Recent advances in low-cost carbon fiber manufacture from lignin. Journal of Applied Polymer Science. 130(2):713-728.
  7. Baker, F. S. (2011) Utilization of sustainable resources for materials for production of carbon fiber structural and energy efficiency applications. Nordic Wood Biorefinery Conference. March 22-24, 2011. Stockholm Sweden.
  8. Baklanova, O. N., G. V. Plaksin, V. A. Drozdov, V. K. Duplyakin, N. V. Chesnokov and B. N. Kuznetsov. (2003) Preparation of microporous sorbents from cedar nutshells and hydrolytic lignin Carbon. Carbon. 41(9):1793-1800.
  9. Bayat, M., H. Yang, D. Michelson and F. K. Ko (2009) Multi scale and geometry effect on the electromagnetic behaviour of Fe3O4 carbon composite nanofibers. 18th international conference on composite materials.
  10. Bengisu, M., E. Yilmaz. (2002) Oxidation and pyrolysis of chitosan as a route for carbon fiber derivation. Carbohydrate Polymers. 50(2):165-175.
  11. Braun, J. L., K. M. Holtman and J. F. Kadla. (2005) Lignin–based carbon fibers: Oxidative thermostabilization of kraft lignin. Carbon. 43(2):385-394.
  12. Brodin, I., M. Ernstsson, G. Gellerstedt and E. Sjöholm. (2012) Oxidative stabilisation of kraft lignin for carbon fibre production. Holzforschung. 66(2):141-147.
  13. Buckley, J. D., D. D. Edie. (1993) Carbon-carbon materials and composites. Noyes Publications. 283 pp.
  14. Cao, J., G. Xiao, X. Xu, D. Shen and B. Jin. (2013) Study on carbonization of lignin by TG-FTIR and high-temperature carbonization reactor. Fuel Processing Technology. 106:41-47.
  15. Chandier, K. W., J. Peddieson, S. A. Idem and S. G. Rochelle. (2002) An improved 1D fiber dry spinning mass transfer model. Mechanics Research Communications. 29(5):351-357.
  16. Chen, J. P., G. Y. Chang and J. K. Chen. (2008) Electrospun collagen/chitosan nanofibrous membrane as wound dressing. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 313-314(1):183-188.
  17. Chen, X. Y. and Q. Q. Zhou. (2012) The production of porous carbon from calcium lignosulfonate without activation process and the capacitive performance. Electrochimica Acta. 71(1):92-99.
  18. Compere, A. L., W. L. Griffith, C. F. Leitten and J. T. Shaffer. (2001) Low cost carbon fiber from renewable resources. Adv. Affordable Mater. Technol. 33:1306-1314.
  19. Dallmeyer, I., F. Ko and J. Kadla. (2010) Electrospinning of technical lignins for the production of fibrous networks. Journal of Wood Chemistry and Technology. 30(4):315-329.
  20. Davé, V., A. Prasad, H. Marand and W. G. Glasser. (1993) Molecular organization of lignin during carbonization. Polymer. 34(15):3144-3154.
  21. Demiral, H., I ̇ Demiral, B. Karabacakoğ̌lu and F. Tümsek. (2011) Production of activated carbon from olive bagasse by physical activation. Chemical Engineering Research and Design. 89(2):206-213.
  22. Donnet, J-B. (1998) Carbon fibers. CRC Press. 584 pp.
  23. Doufas, A. K., A. J. McHugh and C. Miller. (2000) Simulation of melt spinning including flow-induced crystallization: Part I. Model development and predictions. Journal of Non-Newtonian Fluid Mechanics. 92(1):27-66.
  24. Economy, J., M. Daley and C. Mangun. (1996) Activated carbon fibers - past, present and future. ACS preprints. 41(1):321-325.
  25. Fenner, R. A and J. O. Lephardt. (1981) Examination of the thermal decomposition of kraft pine lignin by Fourier transform infrared evolved gas analysis. Journal of Agricultural and Food Chemistry. 29(4):846-849.
  26. Ferdous, D., A. K. Dalai, S. K. Bej and R. W. Thring. (2002) Pyrolysis of lignin experimental and kinetics studies. Energy & Fuels. 16(6):1405-1412.
  27. Foster, K. L., R. G. Fuerman, J. Economy, S. M. Larson and M. J. Rood. (1992) Adsorption characteristics of trace volatile organic compounds in gas streams onto activated carbon fibers. Chemistry of Materials. 4(5):1068-1073.
  28. Gandhi, M., H. Yanga, L. Shorb and F. Ko. (2009) Post-spinning modification of electrospun nanofiber nanocomposite from Bombyx mori silk and carbon nanotubes. Polymer. 50(8):1918-1924.
  29. Gaur, V., A. Sharma and N. Verma. (2006) Preparation and characterization of ACF for the adsorption of BTX and SO2. Chemical Engineering and Processing : Process Intensification. 45(1):1-13.
  30. Gellerstedt, G., E. Sjöholm and I. Brodin. (2010) The wood-based biorefinery: A source of carbon fiber? The Open Agriculture Journal. 3:119-124.
  31. Goring, D. A. I. (1963) Thermal softening of lignin, hemicellulose and cellulose. Pulp and Paper Magazine of Canada. 64:T-517-T-527.
  32. Gregg, S. J. and K. S. W. Sing. (1982) Adsorption surface area and porosity. Academic press. 371 pp.
  33. Hamad, W. (2006) On the development and applications of cellulosic nanofibrillar and nanocrystalline materials. The Canadian Journal of Chemical Engineering. 84(5):513-519.
  34. Hatakeyama, H. and T. Hatakeyama. (2010) Lignin structure, properties and applications. Biopolymers, Advances in Polymer Science. 232:1-63.
  35. Hayashi, J., A. Kazehaya, K. Muroyama and A. P. Watkinson. (2000) Preparation of activated carbon from lignin by chemical activation. Carbon. 38(13):1873-1878.
  36. Hayashi, J., K. Muroyama, V.G. Gomes and A. P. Watkinson. (2002) Fractal dimensions of activated carbons prepared from lignin by chemical activation. Carbon. 40(4):617-636.
  37. Hernández-Montoya, V. and A. B. Petriciolet. (2012) Lignocellulosic precursors used in the synthesis of activated carbon - characterization techniques and applications in the wastewater treatment. InTech. 92 pp.
  38. Hu, T. Q. (2002) Chemical modification, properties, and usage of lignin. New York : Kluwer Academic/Plenum Publishers.
  39. Huan, T. N., T. V. Khai, Y. J. Kang, K. B. Shimb and H. Chung. (2012) Enhancement of quaternary nitrogen doping of graphene oxide via chemical reduction prior to thermal annealing and an investigation of its electrochemical properties. Journal of Materials Chemistry. 22:14756-14762.
  40. Huang, C. H., M. Y. Lee and S. Kim. (2013) An inverse problem in determining the acid and salt diffusivities simultaneously for polymer solution in a wet spinning process. Applied Mathematical Modelling. 37(3):1108-1125.
  41. Huang, X. (2009) Fabrication and properties of carbon fibers. Materials. 2(4):2369-2403.
  42. Hurt, R. H., A. F. Sarofim and J. P. Longwell. (1991) The role of microporous surface area in the gasification of chars from a sub-bituminous coal. Fuel. 70(9):1079-1082.
  43. Ibrahim, S. and M. R. Johan. (2012) Thermolysis and conductivity studies of poly(ethylene oxide) (PEO) based polymer electrolytes doped with carbon nanotube. International Journal of Electrochemical Science. 7(3):2596-2615.
  44. Johnson, D. J. (1975) The fine structure of lignin-based carbon fibres. Carbon. 13(4):321-325.
  45. Kadla, J. F., S. Kubo, R. A. Venditti, R. D. Gilbert, A. L. Compere and W. Griffith. (2002) Lignin–based carbon fibers for composite fiber applications. Carbon. 40(15):2913-2920.
  46. Kadla, J. F. and S. Kubo. (2003) Miscibility and hydrogen bonding in blends of poly(ethylene oxide) and kraft lignin. Macromolecules. 36(20):7803-7811.
  47. Khezami, L., A. Chetouani, B. Taouk and R. Capart. (2005) Production and characterisation of activated carbon from wood components in powder cellulose, lignin, xylan. Powder Technology. 157(1-3):48-56.
  48. Kubo, S., J. F. Kadla. (2005) Lignin-based carbon fibers: Effect of synthetic polymer blending on fiber properties. Journal of Polymers and the Environment. 13(2):97-105.
  49. Kubo, S., Y. Uraki and Y. Sano. (1998) Preparation of carbon fibers from softwood lignin by atmospheric acetic acid pulping. Carbon. 36(7–8):1119–1124.
  50. Lallave, M., J. Bedia, R. Ruiz-Rosas, J. Rodríguez-Mirasol, T. Cordero, J. C. Otero, M. Marquez, A. Barrero and I.G. Loscertales. (2007) Filled and hollow carbon nanofibers by coaxial electrospinning of alcell lignin without binder polymers. Advanced Materials. 19(23):4292-4296.
  51. Li, Q. W., Li. Yuan, S. B. Chikkannanavar, Y. H. Zhao, A. M. Dangelewicz, L. X. Zheng, S. K. Doorn, Q. X. Jia, D. E. Peterson P. N. Arendt and Y. T. Zhu. (2007) Structure-dependent electrical properties of carbon nanotube fibers. Advanced Materials 19(20):3358-3363.
  52. Liou, T. H. (2010) Development of mesoporous structure and high adsorption capacity of biomass-based activated carbon by phosphoric acid and zinc chloride activation. Chemical Engineering Journal. 158(2):129-142.
  53. Liu., Qianjun, G. Liu, Z. Li, H. Huang and Q. Lin. (2011) Preparation of sorbents with lignosulfonate. The 5th International Conference on Bioinformatics and Biomedical Engineering. May 10-12, 2011. Wuhan China.
  54. Lora, J. H. and W. G. Glasser. (2002) Recent industrial applications of lignin : a sustainable alternative to nonrenewable materials. Journal of Polymers and the Environment. 10(1-2):39-48.
  55. Lü, Q. F., Z. W. He, J. Y. Zhang and Q. Lin. (2011) Preparation and properties of nitrogen-containing hollow carbon nanospheres by pyrolysis of polyaniline-lignosulfonate composites. Journal of Analytical and Applied Pyrolysis. 92(1):152-157.
  56. Lua, A. C. and J. Guo. (2000) Activated carbon prepared from oil palm stone by one-step CO2 activation for gaseous pollutant removal. Carbon. 38(7):1089-1097.
  57. Luo, J., J. Genco, B. Cole and R. Fort. (2011) Lignin recovered from the near-neutral hemicellulose extraction process as a precursor for carbon fiber. BioResources. 6:4566-4593.
  58. Majibur, M., R. Khan, Y. Gotoh, H. Morikawa, M. Miura, Y. Fujimori and M. Nagura. (2007) Carbon fiber from natural biopolymer: Bombyxmori silk fibroin with iodine treatment. Carbon. 45(5):1035-1042.
  59. Marsh, H. (1989) Introduction to carbon science. Butterworth–Heinemann. 348 pp.
  60. Marsh, H. and F. Rodríguez-Reinoso. (2006) Activated carbon. Elsevier. 554 pp.
  61. Mathur, R. B., O. P. Bahl and J. Mittal. (1992) A new approach to thermal stabilisation of PAN fibres. Carbon. 30(4):657-663.
  62. Molina, A. and F. Mondragón. (1998) Reactivity of coal gasification with steam and CO2. Fuel. 77(15):1831-1839.
  63. Norberg, I. (2012). Carbon fibres from kraft lignin. Ph.D. Thesis, Royal Institute of Technology, KTH, Stockholm, Sweden.
  64. Norberg, I., Y. Nordström, R. Drougge, G. Gellerstedt and E. Sjöholm. (2013) A new method for stabilizing softwood kraft lignin fibers for carbon fiber production. Journal of Applied Polymer Science. 128(6):3824-3830.
  65. Okutan, N., P. Terzi and F. Altay. (2014) Affecting parameters on electrospinning process and characterization of electrospun gelatin nanofibers. Food Hydrocolloids. 39:19-26.
  66. Otani, S., Y. Fukuoka, B. Igarashi and K. Sasaki. (1969) Method for producing carbonized lignin fiber. US Patent 3,461,082 .
  67. Pham, Q., U. Sharma and A. G. Mikos. (2006) Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Engineering. 12(5):1197-1211.
  68. Prauchner, M. J., V. M. D. Pasa, S. Otani, and C. Otani. (2005) Biopitch-based general purpose carbon fibers: Processing and properties. Carbon. 43(3):591-597.
  69. Qingwen, Li., Y. Li, S. B. Chikkannanavar, Y. H. Zhao, A. M. Dangelewicz, L. X. Zheng, S. K. Doorn, Q. Jia, D. E. Peterson, P. N. Arendt and Y. Zhu. (2007) Structure-dependent electrical properties of carbon nanotube fibers. Advanced Materials 19(20):3358-336.
  70. Robert, D. R., B. Michel, G. Gellerstedt and L. Lindfors. (1984) Structural changes in lignin during Kraft cooking. Part 3. On the structure of dissolved lignins. Journal of Wood Chemistry and Technology. 4(3):239-263.
  71. Rodríguez-Mirasol, J., T. Cordero and J.J. Rodriguez. (1993) CO2-reactivity of eucalyptus kraft lignin chars. Carbon. 31(1):53-61.
  72. Rodríguez-Reinoso F. (1998) The role of carbon materials in heterogeneous catalysis. Carbon. 36(3):159-175.
  73. Rodríguez-Reinoso, F., A. C. Pastor, H. Marsh and M. A. Martınez. (2000) Preparation of activated carbon cloths from viscous rayon. Part II: physical activation processes. Carbon. 38(3):379-395.
  74. Ruiz-Rosas, R., J. Bedia, M. Lallave, I.G. Loscertales, A. Barrero, J. Rodríguez-Mirasol and T. Cordero. (2010) The production of submicron diameter carbon fibers by the electrospinning of lignin. Carbon. 48(3):696-705.
  75. Savage, G. (1992) Carbon-carbon composites, Chapman n Hall. 400 pp.
  76. Seo, D. K., J. P. Jeun,H. B. Kim and P. H. Kang. (2011) Preparation and characterization of the carbon nanofiber mat produced from electrospun pan/lignin precursors by electron beam irradiation. Reviews on Advanced Materials Science. 28(1):31-34.
  77. Shim, J., S. Park, S. K. Ryu. (2001) Effect of modification with HNO3 and NaOH on metal adsorption by pitch-based activated carbon fibers. Carbon, 39(11):1635-1642.
  78. Sing, K. S. W. (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry. 57(4):603-619.
  79. Soleimani, M. and T. Kaghazchi. (2007) Agricultural waste conversion to activated carbon by chemical activation with phosphoric acid, Chemical Engineering & Technology. 30(5):649-654.
  80. Sudo, K., K. Shimizu (1992) A new carbon fiber from lignin. Journal of Applied Polymer Science. 44(1):127-134.
  81. Sudo, K., K. Shimizu, N. Nakashima and A. Yokoyama. (1993) A new modification method of exploded lignin for the preparation of a carbon fiber precursor. Journal of Applied Polymer Science. 48(8):1485-1491.
  82. Taylor, G. (1969) Electrically Driven Jets. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences. 313(1515):453-475.
  83. Thunga, M., K. Chen, D. Grewell and M. R. Kessler. (2014) Bio-renewable precursor fibers from ligninpolylactide blends for conversion to carbon fibers. Carbon. 68:159-166.
  84. Tsai, P. P., H. Schreuder-Gibson and P. Gibson. (2002) Different electrostatic methods for making electret filters. Journal of Electrostatics. 54(3-4) :333-341.
  85. Uraki, Y., S. Kubo, N. Nigo, Y. Sano and T. Sasaya. (1995) Preparation of carbon fibers from organosolv lignin obtained by aqueous acetic acid pulping. Holzforschung. 49(4):343-350.
  86. Ventura, D. N., R. A. Stone, K. S. Chen, H. H. Hariri, K. A. Riddle, T. J. Fellers, C. S. Yun, G. F. Strouse, H. W. Kroto and S. F. A. Acquah. (2010) Assembly of cross-linked multi-walled carbon nanotube mats. Carbon. 48(4):987-994.
  87. Viet, A. L., M. V. Reddy, R. Jose, B. V. R. Chowdari and S. Ramakrishna. (2009) Nanostructured Nb2O5 polymorphs by electrospinning for rechargeable lithium battery. The Journal of Physical Chemistry C. 114:664-671.
  88. Walker, P. L. Jr., F. Rusinko Jr. and L. G. Austin. (1959) Gas Reactions of Carbon. Advances in Catalysis. 11:133-211.
  89. Wang, H. M. Tucker and Y. Ji. (2013) Recent development in chemical depolymerization of lignin : a review. Journal of Applied Chemistry. 2013:1-9.
  90. Wigmans, T. (1989) Industrial aspects of production and use of activated carbons. Carbon. 27(1):13-22.
  91. Yang, H., R. Yan, H. Chen, D. H. Lee and C. Zheng. (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 86(12-13):1781-1788.
  92. Yoshida, C., K. Okabe, T. Yao, N. Shiraishi and A. Oya. (2005) Preparation of carbon fibers from biomass-based phenol-formaldehyde resin. Journal of Materials Science. 40(2):335-339.
  93. Yun, C. H., Y. H. Park and C. R. Park. (2001) Effects of pre-carbonization on porosity development of activated carbons from rice straw. Carbon. 39(3):559-567.
  94. Zhang, C., X. Yuan, L. Wu, Y. Han and J. Sheng. (2005) Study on morphology of electrospun poly(vinyl alcohol) mats. European Polymer Journal. J. 41(3):423-432.
  95. Zhao, J., X. W. Wang, J. Hu, Q. Liu, D. Shen and R. Xiao (2014) Thermal degradation of softwood lignin and hardwood lignin by TG-FTIR and Py-GC/MS. Polymer degradation and stability. 108:133-138.