Title

氮化物螢光粉組成調控對其發光特性影響之研究

Translated Titles

The Research of Composition-Controlled Effects on Photoluminescence of Nitride Phosphors

Authors

黃琬瑜

Key Words

氮化物 ; 螢光粉 ; 組成調控 ; 熱穩定性 ; 發光特性 ; nitride ; phosphors ; composition-controlled ; thermal stability ; photoluminescence

PublicationName

臺灣大學化學研究所學位論文

Volume or Term/Year and Month of Publication

2014年

Academic Degree Category

博士

Advisor

劉如熹

Content Language

英文

Chinese Abstract

稀土元素摻雜之無機氮化物發光材料為近年來新開發出之適合白光發光二極體(LED)應用高效螢光粉,因其具有由SiN4組成之緊密共價網狀結構與較大之晶場分裂,具有比氧化物螢光粉更佳之熱穩定性與更紅位移之放光。照明用之白光LED使用氮化物螢光粉可提高演色性、熱穩定性與化學穩定性,不僅使得白光發光光譜更趨近自然光,反映真實色彩,亦延長白光LED之使用壽命。氮化物螢光粉之研製與開發促進白光發光二極體技術迅速發展。 本研究以改善三種氮化物螢光粉之熱穩定性為目標,三種氮化物螢光粉分別為nitridosilicates (MSiN)、oxonitridoaluminosilicates (MSiAlON)與 nitridoaluminosilicates (MAlSiN)。應用已知物理特性作為改善熱穩定性之策略,例如: Si−C鍵之共價性高於Si−N鍵與Ba2+陽離子之熱振動頻率小於Sr2+陽離子。利用陰離子取代非活化劑格位或陽離子取代活化劑/非活化劑格位並輔以電荷補償保持電中性,調控氮化物螢光粉組成並探討其發光性質之改變。此外,對於超乎預期之發光現象,我們亦提出合理之解釋機制並輔以實驗證明。 於第一部分研究中,提出鄰近陽離子控制效應來解釋此熱穩定性之變化,並從HRTEM證實Sr0.6Y1.38Si4N6.6C0.4:Ce3+0.02 中間相為兩相(SrYSi4N7 + Y2Si4N6C)共存之結構。第二部分研究中,於Sr0.92-xBaxSiAl2O3N2:Ce3+0.04,Eu2+0.04系統隨x值增加伴隨之放光光譜紅移與熱穩定性增加,乃導因於活化劑格位之化學壓壓縮效應。而第三部分研究,藉由同時摻雜Si4+與C4-離子於CaAlSiN3:Eu2+紅色氮化物螢光粉中,藉由第二配位層收縮效應之調控,熱穩定性可被大幅提升。 本論文調控不同氮化物螢光粉組成,並針對發光特性提出合理之機制解釋與相對應之詳細探討與證明,相信對於解釋其他螢光粉之發光特性,有一定之參考價值。另外,對於被改善與增強之氮化物螢光粉之熱穩定性,相信於白光LED之應用具發展潛力。

English Abstract

Inorganic luminescent nitride doped with rare-earch elements as activators are newly developed high efficiency phosphors for white LEDs. Owing to their dense covalence frameworks constructing by SiN4 tetrahedra and larger crystal field splitting, nitride phosphors have better thermal stabilities and more red-shift emission than oxide phosphors. White LED using nitride phosphors can enhance the color rendering index, thermal stability and chemical stability. It not only cause the spectrum of white light from white LEDs to be closer to the natural light and reflect the true color of the object, but also prolong the using life of whie LEDs. The research and development of nitride phosphors promote the rapid development of white LED technologies. The study of this thesis targets the improvement of thermal stabilities of three nitride phosphors including nitridosilicates (MSiN), oxonitridoaluminosilicates (MSiAlON) and nitridoaluminosilicates (MAlSiN), respectively. The composition-controlled strategies for thermal stability are based on known physical properties. For example, the covalence of Si−C bonds is larger than that of Si−N bonds and the thermal vibrational frequency of Ba2+ cations are smaller than that of Sr2+ cations. These improvement strategies are applied to the anions substitution for non-activator sites or the cations substitution for activator/non-activator sites of nitride phosphors and simutanously maintain the crystal sturcture in the electrical neutrality by charge compensation. In addition, composition-controlled effects for photoluminescence in these three different nitride phosphors are invesigated. Furthermore, we propose the explaining mechanisms for the unexpected photoluminescence phenomena and demonstrate these by the experimental evidences each other. In the first research part, the coexistence of two phases in the middle phase Sr0.6Y1.38Si4N6.6C0.4:Ce3+0.02 and a dominant neighboring-cation effect had been discovered to control the thermal stability of Sr1−xY0.98+xSi4N7−xCx:Ce3+0.02 materials. In the second research part, the decrease in emission energy and the increase in thermal stability with x in Sr0.92−xBaxSiAl2O3N2:Ce3+0.04,Eu2+0.04 system are resulted from a dominant chemical pressure compression effect on the activator sites. In the third research part, the emission and thermal stability of Ca0.99Al1−4δ/3−xSi1+δ+xN3−xCx:Eu2+0.01 (δ = 0.345; x = 0–0.2) red nitride phosphors are well improved by second-sphere-shrinkage effect. The thesis focuses on the research of composition-controlled effects for improving photoluminescence in different nitride phosphors, proposes reasonable mechanisms to elucidate the effects, and provides the corresponding detailed investigations and evidence. We believe that these studies have certain reference values for understanding photoluminescence in other phosphors. In addition, the nitride phosphors with improved thermal stabilities in this thesis also have development potential for white LEDs in the future.

Topic Category 基礎與應用科學 > 化學
理學院 > 化學研究所
Reference
  1. References (Chapter 1)
  2. [1] Ke, W.-C. “Investigation of phosphors with high stability for white light emitting diodes” Master thesis, Department of Chemistry, National Taiwan University, Taipei, 2009.
  3. [2] From McKinsey in 2012 and sort out by IEK, ITRI in 2013.
  4. [3] YOLE Development, Market & Technology Report-Oct, 2012.
  5. [4] Jackson, M. “Research report: LED lighting” Woodside Capital Partners International, 2012.
  6. [5] Mitsubishi Chemical Corporation and Technology Research Center, Inc., LED Lighting Taiwan Conference, 2010.
  7. [6] Jüstel, T. “Luminescent materials for high brightness LEDs” FH Munster-Philips Research Aachen, 2005.
  8. [7] Jabłoński energy diagram, Olympus Microscopy Resource Center.
  9. [8] Shionoya, S.; Yen, W. M. “Phosphor handbook” CRC Press, Florida, 1998.
  10. [9] Dieke, G. H. “Spectra and energy levels of rare earth ions in crystals” John Wiley & Sons. Inc, 1968.
  11. [10] Yen, W. M.; Shionoya, S.; Yamamoto, H. “Phosphor handbook”, 2nd Ed., CRC press, Boca Raton, 2007, p.168-172.
  12. [11] Ronda, C. R. “Emission and excitation mechanisms of phosphors” In Wiley-VCH Verlag GmbH & Co. KGaA, 2007; p 1-34.
  13. [12] d subshell orbitals, Electron structure of atoms.
  14. [13] Condon, E. “A theory of intensity distribution in band systems” Phys. Rev. 1926, 28, 1182.
  15. [14] Ronda, C. R. “Emission and excitation mechanisms of phosphors” Chapter 1, in Wiley-VCH Verlag GmbH & Co. KGaA, 2007.
  16. [15] Dexter, D. L. “A theory of sensitized luminescence in solids” J. Chem. Phys. 1953, 21, 836.
  17. [16] Sun, J.; Zeng, J.; Sun, Y.; Du, H. “Photoluminescence properties and energy transfer of Ce3+, Eu2+ co-doped Sr3Gd(PO4)3 phosphor” J. Alloys Compd. 2012, 540, 81.
  18. [17] Hsu, C.-H.; Cheng, B.-M.; Lu, C.-H. “Photoluminescent properties and energy transfer mechanism of color-tunable CaSi2O2N2:Ce3+, Eu2+ phosphors” J. Am. Ceram. Soc. 2011, 94, 2878.
  19. [18] Ronda, C. “Luminescence” WILEY-VCH Verlag GmbH&Co. KGaA, 2008.
  20. [19] Tang, Y.-S. “Investigations on the novel properties and packaging performance of phosphors in light-emitting diodes” Master thesis, Institute of Electro-optical Science and Technology, National Taiwan Normal University, 2008.
  21. [20] Chu, C.-I. “Investigation and optimization of phosphors for ultraviolet light-emitting diodes” Master thesis, Department of Chemistry, National Taiwan University, 2011.
  22. [21] Praveena, R.; Shi L.; Jang, K. H.; Venkatramu, V.; Jayasankar, C. K.; Seo, H. J. “Sol–gel synthesis and thermal stability of luminescence of Lu3Al5O12:Ce3+ nano-garnet” J. Alloys Compd. 2011, 509, 859.
  23. [22] Ueda, J.; Tanabe, S.; Nakanishi, T. “Analysis of Ce3+ luminescence quenching in solid solutions between Y3Al5O12 and Y3Ga5O12 by temperature dependence of photoconductivity measurement” J. Appl. Phys. 2011, 110, 053102.
  24. [23] Xu, S.-Y.; Zhang, X.-S.; Zhou, Y.-L., Xi, Q.; Li, L. “Influence of Si4+ substitution on the temperature-dependent characteristics of Y3Al5O12:Ce” Chin. Phys. B 2011, 20, 037804.
  25. [24] Xie, R.-J. “Nitride phosphors and solid-state lighting” Taylor & Francis Group, CRC Press, New York.
  26. [25] Schubert, E. F. “The hardness scale introduced by Friederich Mohs”.
  27. [26] Liddell, K.; Thompson, D. P.; Bräuniger, T.; Harris, R. K. “M2(Si,Al)4(N,C)7 (M = La,Y,Ca) I. Synthesis and structural characterisation by XRD and NMR” J. Eur. Ceram. Soc. 2005, 25, 37.
  28. [27] Liddell, K.; Thompson, D. P.; Teat, S. J. “M2(Si,Al)4(N,C)7 (M = La,Y,Ca) carbonitrides II. The crystal structure of Ca0.8Y1.2Si4N6.8C0.2” J. Eur. Ceram. Soc. 2005, 25, 49.
  29. [28] Höppe, H. A.; Kotzyba, G.; Pöttgen, R.; Schnick, W. “High-temperature synthesis, crystal structure, optical properties, and magnetism of the carbidonitridosilicates Ho2[Si4N6C] and Tb2[Si4N6C]” J. Mater. Chem. 2001, 11, 3300.
  30. [29] Blasse, G.; Grabmaier, B. C. “Luminescent materials” Chapter 5, 1994.
  31. [30] Han, B.; Zhang, J.; Wang, Z.; Liu, Y.; Shi, H. “Investigation on the concentration quenching and energy transfer of red-light-emitting phosphor Y2MoO6:Eu3+” J. Lumin. 2014, 149, 150.
  32. [31] Park, J. Y.; Lee, J. H.; Raju, G. S. R.; Moon, B. K.; Jeong, J. H.; Choi, B. C.; Kim, J. H. “Synthesis and luminescent characteristics of yellow emitting GdSr2AlO5:Ce3+ phosphor for blue light based white LED” Ceram. Int. 2014, 40, 5693.
  33. [32] Wang, Z.; Teng, X.; Li, P. “Luminescence and energy transfer of Ce3+–Eu2+ in BaMg2(PO4)2” J. Alloys Compd. 2014, 589, 549.
  34. [33] Yuan, B.; Song, Y.; Sheng, Y.; Zheng, K.; Huo, Q.; Xu, X.; Zou, H. “Luminescence properties and energy transfer of Ca2Mg0.5AlSi1.5O7:Ce3+,Eu2+ phosphors for UV-excited white LEDs” Powder Technol. 2014, 253, 803.
  35. [34] Dexter, D. L. “A theory of sensitized luminescence in solids” J. Chem. Phys. 1953, 21, 836.
  36. [35] Wang, J.; Wang, J.; Duan, P. “Luminescent properties of Dy3+ doped Sr3Y(PO4)3 for white LEDs” Mater. Lett. 2013, 107, 96.
  37. [36] Huang, W.-Y.; Yoshimura, F.; Ueda, K.; Shimomura, Y.; Sheu, H.-S.; Chan, T. S.; Greer, H. F.; Zhou, W.; Hu, S. F.; Liu, R. S.; Attfield, J. P. “Nanosegregation and neighbor-cation control of photoluminescence in carbidonitridosilicate phosphors” Angew. Chem. Int. Ed. 2013, 52, 8102.
  38. [37] Qin, J.; Hu, C. Lei, B.; Li, J.; Liu, Y.; Ye, S.; Pan, M. “Temperature-dependent luminescence characteristic of SrSi2O2N2:Eu2+ phosphor and its thermal quenching behavior” J. Mater. Sci. Technol. 2014, 30, 290.
  39. [38] Pawade, V. B.; Dhoble, S. J. “Spin-orbit splitting difference and Stokes shift in cerium3+-activated aluminate phosphors” Spectrosc. Lett. 2013, 46, 472.
  40. [39] Chen, G.; Zhuang, W.; Liu, R. “Photoluminescent properties of tunable green-emitting oxynitride (Ba3-xSrx)Si6O12N2:Eu2+ phosphor and its application in white LEDs” J. Rare Earth. 2013, 31, 944.
  41. [40] Bhoyar, P.; Dhoble, S. J. “Electron-vibrational interaction in 5d state of Eu2+ ion in LiMgBF6, Li2NaBF6 and Li3BF6:Eu2+ phosphors” J. Lumin. 2013, 139, 22.
  42. References (Chapter 2)
  43. [1] Neutron diffraction training course, Center of Neutron Beam Applications.
  44. [2] BL01C2 beamline station of NSRRC, Spokesperson: Dr. Hwo-Shuenn Sheu.
  45. [3] Klug, H. P.; Alexander, L. E. “X-ray Diffraction Procedures”, 1974.
  46. [4] XANES: Theory, X-ray Spectroscopy, UC Davis ChemWiki by University of California.
  47. [5] Matthew Newville, “Fundamentals of XAFS”; Consortium for Advanced Radiation Sources, University of Chicago, Chicago, IL; Revision 1.7, 2004.
  48. [6] Boon K. Teo, “EXAFS: Basic Principles and Data Analysis” Springer-Verlag, 1986.
  49. [7] BL01C1 beamline station of NSRRC.
  50. [8] Lin, L.-P. Instruments Today, 1991, 12, 17.
  51. [9] Wang, Z. L. “Characterization of nanophase materials” John Wiley & Sons: New York, 2000.
  52. [10] TEM, TAMPEREEN TEKNILLINEN YLIOPISTO.
  53. [11] Jerry Chun Chung Chan, “Introduction to solid-state NMR spectroscopy” Instruments Today, 2006, 28, 42.
  54. [12] Andrew, E. R.; Bradbury, A.; Eades, R. G. Nature, “Nuclear magnetic resonance spectra from a crystal rotated at high speed” 1958, 182, 1659.
  55. [13] Lowe, I. J., “Free induction decays of rotating solids” Phys. Rev. Lett. 1959, 2, 285.
  56. [14] Rauch, H.; Waschowski, W. “Neutron data booklet”, 2003.
  57. [15] Bacon, G. E. “Neutron diffraction”, 1975, Oxford, Bristol, 3rd edition.
  58. [16] Echidna, Australian Nuclear Science and Technology Organisation.
  59. [17] FluoroMax-3; HORIBA, Ltd.
  60. [18] Park, S. H.; Yoon, H. S.; Boo, H. M.; Jang, H. G.; Lee, K. H.; Im, W. B. “Efficiency and thermal stability enhancements of Sr2SiO4:Eu2+ phosphor via Bi3+ codoping for solid-state white lighting” Jpn. J. Appl. Phys. 2012, 51, 022602.
  61. [19] Edinburgh FLS920 spectrometer, Edinburgh Instruments Ltd. 2013.
  62. [20] Quantaurus-QY machine, Hamamatsu Company in Japan.
  63. [21] Suzuki, K.; Kobayashi, A.; Kaneko, S.; Takehira, K.; Yoshihara, T.; Ishida, H.; Shiina, Y.; Oishi, S.; Tobita, S. “Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned CCD detector” Phys. Chem. Chem. Phys. 2009, 11, 9850.
  64. References (Chapter 3)
  65. [1] Höppe, H. A. “Recent developments in the field of inorganic phosphors” Angew. Chem. Int. Ed. 2009, 48, 3572.
  66. [2] Yeh, C. W.; Chen, W. T.; Liu, R. S.; Hu, S. F.; Sheu, H. S.; Chen, J. M.; Hintzen, H. T. “Origin of thermal degradation of Sr2−xSi5N8:Eux phosphors in air for light-emitting diodes” J. Am. Chem. Soc. 2012, 134, 14108.
  67. [3] Li, Y. Q.; Hirosaki, N.; Xie, R.-J.; Takeda, T.; Mitomo, M. “Yellow-orange-emitting CaAlSiN3:Ce3+ phosphor: structure, photoluminescence, and application in white LEDs” Chem. Mater. 2008, 20, 6704.
  68. [4] Wang, R.; Zhang, J.; Xu, X.; Wang, Y.; Zhou, L.; Li, B. “White LED with high color rendering index based on Ca8Mg(SiO4)4Cl2:Eu2+ and ZnCdTe/CdSe quantum dot hybrid phosphor” Mater. Lett. 2012, 84, 24.
  69. [5] Wickleder, C. “Luminescent semiconductors” Angew. Chem. Int. Ed. 2011, 50, 806.
  70. [6] Oh, J. H.; Oh, J. R.; Park, H. K.; Sung, Y.-G.; Do, Y. R. “New paradigm of multi-chip white LEDs: combination of an InGaN blue LED and full down-converted phosphor-converted LEDs” Opt. Express 2011, 19, A270.
  71. [7] Huang, C. H.; Chen, T. M. “Novel yellow-emitting Sr8MgLn(PO4)7:Eu2+ (Ln = Y, La) phosphors for applications in white LEDs with excellent color rendering index” Inorg. Chem. 2011, 50, 5725.
  72. [8] ten Kate, O. M.; Zhang, Z.; Dorenbos, P.; Hintzen, H. T.; van der Kolk, E. “4f and 5d energy levels of the divalent and trivalent lanthanide ions in M2Si5N8 (M = Ca, Sr, Ba) ” J. Solid State Chem. 2013, 197, 209.
  73. [9] Roushan, M.; Zhang, X.; Li, J. “Solution-processable white-light-emitting hybrid semiconductor bulk materials with high photoluminescence quantum efficiency” Angew. Chem. Int. Ed. 2012, 51, 436.
  74. [10] Shin, J.-S.; Kim, H.-J.; Jeong, Y.-K.; Kim, K.-B.; Kang, J.-G. “Luminescence characterization of (Ca1−xSrx)(S1−ySey):Eu2+,M3+ (M = Sc and Y) for high color rendering white LED” Mater. Chem. Phys. 2011, 126, 591.
  75. [11] Zeuner, M.; Pagano, S.; Schnick, W. “Nitridosilicates and oxonitridosilicates: from ceramic materials to structural and functional diversity” Angew. Chem. Int. Ed. 2011, 50, 7754.
  76. [12] Chen, W. T.; Sheu, H. S.; Liu, R. S.; Attfield, J. P. “Cation-size-mismatch tuning of photoluminescence in oxynitride phosphors” J. Am. Chem. Soc. 2012, 134, 8022.
  77. [13] Fang, C. M.; Li, Y. Q.; Hintzen, H. T.; de With, G. “Crystal and electronic structure of the novel nitrides MYSi4N7 (M = Sr, Ba) with peculiar NSi4 coordination” J. Mater. Chem. 2003, 13, 1480.
  78. [14] Li, Y. Q.; Fang, C. M.; de With, G.; Hintzen, H. T. “Preparation, structure and photoluminescence properties of Eu2+ and Ce3+-doped SrYSi4N7”J. Solid State Chem. 2004, 177, 4687.
  79. [15] Xie, R.-J.; Hirosaki, N. “Silicon-based oxynitride and nitride phosphors for white LEDs—A review” Sci. Tech. Adv. Mater. 2007, 8, 588.
  80. [16] Thompson, D. P.; Zhang, Y. “Preparation and characterization of MM’Si4N6C ceramics” Key Eng. Mater. 2009, 403, 3.
  81. [17] Liddell, K.; Thompson, D. P.; Teat, S. J. “M2(Si,Al)4(N,C)7 (M = La, Y, Ca) carbonitrides II. The crystal structure of Ca0.8Y1.2Si4N6.8C0.2” J. Eur. Ceram. Soc. 2005, 25, 49.
  82. [18] Zhang, H.; Horikawa, T.; Machida, K.-I. “Preparation, structure, and luminescence properties of Y2Si4N6C:Ce3+ and Y2Si4N6C:Tb3+” J. Electrochem. Soc. 2006, 153, H151.
  83. [19] Duan, C.; Zhang, Z.; Rösler, S.; Rösler, S.; Delsing, A.; Zhao, J.; Hintzen, H. T. “Preparation, characterization, and photoluminescence properties of Tb3+-, Ce3+-, and Ce3+/Tb3+-activated RE2Si4N6C (RE = Lu, Y, and Gd)” Chem. Mater. 2011, 23, 1851.
  84. [20] Höppe, H. A.; Kotzyba, G.; Pöttgen, R.; Schnick, W. “High-temperature synthesis, crystal structure, optical properties, and magnetism of the carbidonitridosilicates Ho2[Si4N6C] and Tb2[Si4N6C]” J. Mater. Chem. 2001, 11, 3300.
  85. [21] Liddell, K.; Thompson, D. P.; Bräuniger, T.; Harris, R. K. “M2(Si,Al)4(N,C)7 (M = La,Y,Ca) I. Synthesis and structural characterisation by XRD and NMR” J. Eur. Ceram. Soc. 2005, 25, 37.
  86. [22] Shannon, R. D. “Revised effective ionic systematic studies of interatomic distances” Acta Crystallogr. 1976, A32, 751.
  87. [23] Blasse, G.; Sabbatini, N. “A comparison between “second-sphere effects” in the excited state properites of coordination compounds and nonmolecular solids” J. Solid State Chem. 1987, 70, 93.
  88. [24] Li, Y. Q.; van Steen, J. E. J.; van Krevel, J. W. H.; Botty, G.; Delsing, A. C. A.; DiSalvo, F. J.; de With, G.; Hintzen, H. T. “Luminescence properties of red-emitting M2Si5N8:Eu2+ (M=Ca, Sr, Ba) LED conversion phosphors” J. Alloys Compd. 2006, 417, 273.
  89. [25] Larson, A. C.; Von Dreele, R. B. “General Structure Analysis System (GSAS)”, Los Alamos National Laboratory Report LAUR 86-748, 2000.
  90. References (Chapter 4)
  91. [1] Jűstel, T.; Nikol, H.; Ronda, C. “New developments in the field of luminescent materials for lighting and displays” Angew. Chem. Int. Ed. 1998, 37, 3084.
  92. [2] Lv, W.; Guo, N.; Jia, Y.; Zhao, Q.; You, H. “ A potential single-phased emission-tunable silicate phosphor Ca3Si2O7:Ce3+,Eu2+ excited by ultraviolet light for white light emitting diodes” Opt. Mater. 2013, 35, 1013.
  93. [3] Höppe, H. A. “Recent developments in the field of inorganic” Angew. Chem. Int. Ed. 2009, 48, 3572.
  94. [4] Yeh, C.-W.; Chen, W.-T.; Liu, R. S.; Hu, S. F. ; Sheu, H.-S.; Chen, J.-M.; Hintzen, H. T. “Origin of thermal degradation of Sr2−xSi5N8:Eux phosphors in air for light-emitting diodes” J. Am. Chem. Soc. 2012, 134, 14108.
  95. [5] Li, Y. Q.; Hirosaki, N.; Xie, R.-J.; Takeda, T.; Mitomo, M. “Yellow-orange-emitting CaAlSiN3:Ce3+ phosphor: structure, photoluminescence, and application in white LEDs” Chem. Mater. 2008, 20, 6704.
  96. [6] Wang, R.; Zhang, J.; Xu, X.; Wang, Y.; Zhou, L.; Li, B. “White LED with high color rendering index based on Ca8Mg(SiO4)4Cl2:Eu2+ and ZnCdTe/CdSe quantum dot hybrid phosphor” Mater. Lett. 2012, 84, 24.
  97. [7] Wickleder, C. “Luminescent semiconductors” Angew. Chem. Int. Ed. 2011, 50, 806.
  98. [8] Oh, J. H.; Oh, J. R.; Park, H. K.; Sung, Y.-G.; Do, Y. R. “New paradigm of multi-chip white LEDs: combination of an InGaN blue LED and full down-converted phosphor-converted LEDs” Opt. Express 2011, 19, A270.
  99. [9] Huang, C. H. Chen, T. M. “Novel yellow-emitting Sr8MgLn(PO4)7:Eu2+ (Ln = Y, La) phosphors for applications in white LEDs with excellent color rendering index” Inorg. Chem. 2011, 50, 5725.
  100. [10] ten Kate, O. M.; Zhang, Z.; Dorenbos, P.; Hintzen, H. T.; van der Kolk, E. “4f and 5d energy levels of the divalent and trivalent lanthanideions in M2Si5N8 (M = Ca, Sr, Ba)” J. Solid State Chem. 2013, 197, 209.
  101. [11] Roushan, M.; Zhang, X.; Li, J. “Solution-processable white-light-emitting hybrid semiconductor bulk materials with high photoluminescence quantum efficiency” Angew. Chem. Int. Ed. 2012, 51, 436.
  102. [12] Shin, J.-S. Kim, H.-J.; Jeong, Y.-K.; Kim, K.-B.; Kang, J.-G. “Luminescence characterization of (Ca1−xSrx)(S1−ySey):Eu2+,M3+ (M = Sc and Y) for high color rendering white LED” Mater. Chem. Phys. 2011, 126, 591.
  103. [13] Zeuner, M.; Pagano, S.; Schnick, W. “Nitridosilicates and oxonitridosilicates: from ceramic materials to structural and functional diversity” Angew. Chem. Int. Ed. 2011, 50, 7754.
  104. [14] Chen, W. T.; Sheu, H.-S.; Liu, R. S.; Attfield, J. P. “Cation-size-mismatch tuning of photoluminescence in oxynitride phosphors” J. Am. Chem. Soc. 2012, 134, 8022.
  105. [15] Park, W. B.; Shin, N.; Hong, K.-P.; Pyo, M.; Sohn, K.-S. “A new paradigm for materials discovery: heuristics-assisted combinatorial chemistry involving parameterization of material novelty” Adv. Funct. Mater. 2012, 22, 2258.
  106. [16] Huang, W.-Y.; Yoshimura, F.; Ueda, K.; Shimomura, Y.; Sheu, H.-S.; Chan, T. S.; Greer, H. F.; Zhou, W.; Hu, S. F.; Liu, R. S.; Attfield, J. P. “Nanosegregation and neighbor-cation control of photoluminescence in carbidonitridosilicate phosphors” Angew. Chem. Int. Ed. 2013, 52, 8102.
  107. [17] Bachmann, V.; Ronda, C.; Oeckler, O.; Schnick, W.; Meijerink, A. “Color point tuning for (Sr,Ca,Ba)Si2O2N2:Eu2+ for White Light LEDs” Chem. Mater. 2009, 21, 316.
  108. [18] Seibald, M.; Oeckler, O.; Celinski, V. R.; Schmidt, P. J.; Tücks, A.; Schnick, W. “Real structure and diffuse scattering of Sr0.5Ba0.5Si2O2N2:Eu2+ - A highly efficient yellow phosphor for pc-LEDs” Solid State Sci. 2011, 13, 1769.
  109. [19] Lauterbach, R.; Schnick, W. “Synthese, Kristallstruktur und Eigenschaften eines neuen Sialons - SrSiAl2O3N2” Z. Anorg. Allg. Chem. 1998, 624, 1154.
  110. [20] Schnick, W.; Huppertz, H.; Lauterbach, R. “High temperature syntheses of novel nitrido- and oxonitrido-silicates and sialons using rf furnaces” J. Mater. Chem. 1999, 9, 289.
  111. [21] Xie, R.-J.; Hirosaki, N.; Yamamoto, Y.; Suehiro, T.; Mitomo, M.; Sakuma, K. “Fluorescence of Eu2+ in strontium oxonitridoaluminosilicates (SiAlONs)” J. Ceram. Soc. Jpn. 2005, 113, 462.
  112. [22] Wulfsberg, G. Inorganic Chemistry; University Science Books: Sausalito, USA, 2000.
  113. [23] Wu, H.; Hu, Y.; Ju, G.; Chen, L.; Wang, X.; Yang, Z. “Photoluminescence and thermoluminescence of Ce3+ and Eu2+ in Ca2Al2SiO7 matrix” J. Lumin. 2011, 131, 2441.
  114. [24] Kurushima, T.; Gundiah, G.; Shimomura, Y.; Mikami, M.; Kijima, N.; Cheetham, A. K. “Synthesis of Eu2+-Activated MYSi4N7 (M = Ca,Sr,Ba) and SrYSi4−xAlxN7−xOx (x = 0–1) green phosphors by carbothermal reduction and nitridation” J. Electrochem. Soc. 2010, 157, J64.
  115. [25] Larson, A. C.; Von Dreele, R. B. General Structure Analysis System (GSAS); Report LAUR 86-748; Los Alamos National Laboratory: Los Alamos, NM, 2000.
  116. [26] Sun, J.; Zeng, J.; Sun, Y.; Du, H. “Photoluminescence properties and energy transfer of Ce3+, Eu2+ co-doped Sr3Gd(PO4)3 phosphor” J. Alloys Compd. 2012, 540, 81.
  117. [27] Dexter, D. L. “A theory of sensitized luminescence in solids” J. Chem. Phys. 1953, 21, 836.
  118. [28] Hsu, C. H.; Cheng, B. M.; Lu, C. H. “Photoluminescent properties and energy transfer mechanism of color-tunable CaSi2O2N2:Ce3+, Eu2+ phosphors” J. Am. Ceram. Soc. 2011, 94, 2878.
  119. [29] Shannon, R. D. “Revised effective ionic systematic studies of interatomic distances” Acta Crystallogr. 1976, A32, 751.
  120. References (Chapter 5)
  121. [1] Lv, W.; Guo, N.; Jia, Y.; Zhao, Q.; You, H. “A potential single-phased emission-tunable silicate phosphor Ca3Si2O7:Ce3+,Eu2+ excited by ultraviolet light for white light emitting diodes” Opt. Mater. 2013, 35, 1013.
  122. [2] Jűstel, T.; Nikol, H.; Ronda, C. “New developments in the field of luminescent materials for lighting and displays” Angew. Chem. Int. Ed. 1998, 37, 3084.
  123. [3] Höppe, H. A. “Recent developments in the field of inorganic” Angew. Chem. Int. Ed. 2009, 48, 3572.
  124. [4] Yeh, C. W.; Chen, W. T.; Liu, R. S.; Hu, S. F. ; Sheu, H.-S.; Chen, J. M.; Hintzen, H. T. “Origin of thermal degradation of Sr2−xSi5N8:Eux phosphors in air for light-emitting diodes” J. Am. Chem. Soc. 2012, 134, 14108.
  125. [5] Li, Y. Q.; Hirosaki, N.; Xie, R.-J.; Takeda, T.; Mitomo, M. “Yellow-orange-emitting CaAlSiN3:Ce3+ phosphor: structure, photoluminescence, and application in white LEDs” Chem. Mater. 2008, 20, 6704.
  126. [6] Wickleder, C. “Luminescent semiconductors” Angew. Chem. Int. Ed. 2011, 50, 806.
  127. [7] Wang, R.; Zhang, J.; Xu, X.; Wang, Y.; Zhou, L.; Li, B. “White LED with high color rendering index based on Ca8Mg(SiO4)4Cl2:Eu2+ and ZnCdTe/CdSe quantum dot hybrid phosphor” Mater. Lett. 2012, 84, 24.
  128. [8] Huang, C.-H. Chen, T.-M. “Novel yellow-emitting Sr8MgLn(PO4)7:Eu2+ (Ln = Y, La) phosphors for applications in white LEDs with excellent color rendering index” Inorg. Chem. 2011, 50, 5725.
  129. [9] Roushan, M.; Zhang, X.; Li, J. “Solution-processable white-light-emitting hybrid semiconductor bulk materials with high photoluminescence quantum efficiency” Angew. Chem. Int. Ed. 2012, 51, 436.
  130. [10] Shin, J.-S. Kim, H.-J.; Jeong, Y.-K.; Kim, K.-B.; Kang, J.-G. “Luminescence characterization of (Ca1−xSrx)(S1−ySey):Eu2+,M3+ (M = Sc and Y) for high color rendering white LED” Mater. Chem. Phys. 2011, 126, 591.
  131. [11] Zeuner, M.; Pagano, S.; Schnick, W. “Nitridosilicates and oxonitridosilicates: from ceramic materials to structural and functional diversity” Angew. Chem. Int. Ed. 2011, 50, 7754.
  132. [12] Xie, R.-J.; Hirosaki, N. “Silicon-based oxynitride and nitride phosphors for white LEDs - A review” Sci. Technol. Adv. Mater. 2007, 8, 588.
  133. [13] Uheda, K.; Hirosaki, N.; Yamamoto, Y.; Naito, A.; Nakajima, T.; Yamamoto, H. “Luminescence properties of a red phosphor, CaAlSiN3:Eu2+, for white light-emitting diodes” Electrochem. Solid State Lett. 2006, 9, H22.
  134. [14] Watanabe, H.; Wada, H.; Seki, K.; Itou, M.; Kijima, N. “Synthetic method and luminescence properties of SrxCa1-xAlSiN3:Eu2+ mixed nitride phosphors” J. Electrochem. Soc. 2008, 155, F31.
  135. [15] Jung, Y. W.; Lee, B.; Singh, S. P.; Sohn, K.-S. “Particle-swarm-optimization-assisted rate equation modeling of the two-peak emission behavior of non-stoichiometric CaAlxSi(7-3x)/4N3:Eu2+ phosphors” Opt. Express, 2010, 18, 17805.
  136. [16] Wang, T.; Zhao, F.; Yang, J.; Mo, Y., Bian, L.; Song, Z.; Liu, Q. L. “Synthesis, structure and tunable red emissions of Ca(Al/Si)2N2(N1-xOx):Eu2+ prepared by alloy-nitridation method” J. Lumin. 2013, 137, 173.
  137. [17] Li, Y. Q.; de With, G.; Hintzen, H. T. “Luminescence properties of Eu2+-doped MAl2-xSixO4-xNx (M = Ca, Sr, Ba) conversion phosphor for white LED applications” J. Electrochem. Soc. 2006, 153, G278.
  138. [18] Setlur, A. A.; Heward, W. J.; Hannah, M. E.; Happek, U. “Incorporation of Si4+-N3− into Ce3+-doped garnets for warm white LED phosphors” Chem. Mater. 2008, 20, 6277.
  139. [19] Wang, S.-S.; Chen, W.-T.; Li, Y.; Wang, J.; Sheu, H.-S.; Liu, R. S. “Neighboring-cation substitution tuning of photoluminescence by remote-controlled activator in phosphor lattice” J. Am. Chem. Soc. 2013, 135, 12504.
  140. [20] Schubert, E. F. “Light-emitting diodes”, Second Edition, Cambridge University Press, 2002.
  141. [21] Liddell, K.; Thompson, D. P.; Bräuniger, T.; Harris, R. K. “M2(Si,Al)4(N,C)7 (M = La,Y,Ca) I. Synthesis and structural characterisation by XRD and NMR” J. Eur. Ceram. Soc. 2005, 25, 37.
  142. [22] Huang, W.-Y.; Yoshimura, F.; Ueda, K.; Shimomura, Y.; Sheu, H.-S.; Chan, T. S.; Greer, H. F.; Zhou, W.; Hu, S. F.; Liu, R. S.; Attfield, J. P. “Nanosegregation and neighbor-cation control of photoluminescence in carbidonitridosilicate phosphors” Angew. Chem. Int. Ed. 2013, 52, 8102.
  143. [23] Huang, W.-Y.; Yoshimura, F.; Ueda, K.; Shimomura, Y.; Sheu, H.-S.; Chan, T. S.; Chiang, C.-Y.; Zhou, W.; Liu, R. S. “Chemical pressure control for photoluminescence of MSiAl2O3N2:Ce3+/Eu2+ (M = Sr, Ba) Oxynitride Phosphors” Chem. Mater. 2014, 26, 2075.
  144. [24] Liss, K.-D.; Hunter, B.; Hagen, M.; Noakes, T.; Kennedy, S. “Echidna—the new high-resolution powder diffractometer being built at OPAL” Physica B 2006, 385-386, 1012.
  145. [25] Larson, A. C.; Von Dreele, R. B. General Structure Analysis System (GSAS); Report LAUR 86-748; Los Alamos National Laboratory: Los Alamos, NM, 2000.
  146. [26] Uheda, K.; Hirosaki, N.; Yamamoto, H. “Host lattice materials in the system Ca3N2–AlN–Si3N4 for white light emitting diode” Phys. Status Solidi A, 2006, 203, 2712.
  147. [27] Shannon, R. D. “Revised effective ionic systematic studies of interatomic distances” Acta Crystallogr. 1976, A32, 751.
  148. [28] Hainbuchner, M.; Jericha, E. “Bound coherent neutron scattering lengths”, 2001.
  149. [29] Fuertes, A. “Prediction of anion distributions using Pauling's second rule” Inorg. Chem. 2006, 45, 9640.
  150. [30] Blasse, G.; Sabbatini, N. “A comparison between “second-sphere effects” in the excited state properties of coordination compounds and nonmolecular solids” J. Solid State Chem. 1987, 70, 93.
  151. [31] Fitzgerald, J. J. “Solid-state NMR spectroscopy of inorganic materials”, American Chemical Society: Washington, D.C., 1999.