Title

手性金屬有機配位化合物之介電性質調控研究

Translated Titles

Investigation of Guest-Dependent Dielectric Behavior of Chiral Metal-Organic Frameworks and Supramolecular Compounds

Authors

蘇娣

Key Words

有機配位化合物 ; 蜂巢 ; Metal-Organic Frameworks ; dielectric ; chiral

PublicationName

臺灣大學化學研究所學位論文

Volume or Term/Year and Month of Publication

2014年

Academic Degree Category

博士

Advisor

林英智

Content Language

英文

Chinese Abstract

本論文研究以手性含氮有機配子與過渡金屬鹽反應,設計合成九個新型手性金屬有機配位化合物(Metal-Organic Frameworks, MOFs)。化合物{[Zn2(L-trp)2(bpe)2(H2O)2]•2H2O•2NO3}n (1)、 {[Co(L-trp)(bpe)(H2O)]•H2O•NO3}n (2) 、 {[Co(L-trp)(bpa)(H2O)]•H2O•NO3}n (3) 為二維手性結構,具有(4,4)矩形孔洞狀拓撲。化合物[Zn2(Hbbim)2(bbim)]n (4)為二維蜂巢(honeycomb)結構,具有(6,3)拓樸網狀特徵。化合物{{[Mn(bbim)(H2bbim)]•CH3OH}{[Mn(bbim)(H2bbim)]•H2O}}n (5) 是一維zig-zag 鍊狀結構,化合物[Mg(phen)(bdc)]n (6) 是不含客分子且是罕見cds-型三維有機金屬配位聚合物。化合物{[Ni2(bbim)(H2bbim)4]•2CH3COO•CH3CN}2 (7)、化合物{[Ni(H2bbim)3]•2Cl•2H2O} (8) 及化合物D/L-{[Cr(Hbbim)3]•3H2O} (9)藉由客分子間氫鍵形成超分子。另人驚奇的是,外消旋化合物D/L-{[Cr(Hbbim)3]•3H2O} (9)是非常獨特的結構,含有一組4員環螺旋槳狀的水團簇呈外消旋而聚在一起,其中兩兩互為鏡像的螺旋物,彼此互穿而形成三維結構,具有103網狀具srs拓樸特徵。到目前為止,內類似化合物9含有相同手性之鏡像異構物,進行掌性分子辨識和自組裝,在超分子的領域尚未被報導過。 本論文研究詳細探討新合成化合物的介電性質,發現化合物1及4為低介電物質。化合物1的介電常數值 (κ = 2.53,1 MHz),相近似於沸石咪唑骨架結構物(ZIFs)。其獨特陰離子能夠調控物質的介電數值,發現當陰離子的極化增加時,其介電常數會隨之增大。此外,化合物1為良好的發光材料(為546 nm的綠光)和非線性光學材料,產生二次倍頻 (second harmonic generation, SHG)的效能約SiO2的兩倍。令人值得注意的是,化合物4的介電常數低於已報導過的ZIFs結構物,由於它是一個層狀結構物,且各層間並不存在水分子,它是一個非常有用的低介電及高度熱穩定的物質。調變頻率進行介電性的研究,顯示化合物7和8的介電常數(κ)和介電損耗有明顯差異,可能由於結構和所含的溶劑分子的類型不同所造成。本論文在物質結構及相關基礎的研究,發現客分子之調控,對於高介電係數或低介電係數材料之設計,可作為重要之參考。

English Abstract

A series of chiral metal-organic frameworks (MOFs) and supramolecular compounds were synthesized by reacting nitrogen containing ligands with transition metal salts and their dielectric behavior was investigated. The structures of these compounds range from one dimensional zig-zag chains to three dimensional structures. Compounds 1~4 were found to be chiral, with two dimensional structures. Compounds {[Zn2(L-trp)2(bpe)2(H2O)2]•2H2O•2NO3}n (1), {[Co(L-trp)(bpe)(H2O)]•H2O•NO3}n (2) and {[Co(L-trp)(bpa)(H2O)]•H2O•NO3}n (3) displayed a common framework with a rectangle- like (4,4) topology, whereas compound [Zn2(Hbbim)2(bbim)]n (4) has a honeycomb structure with a (6,3) connected net. Compound {{[Mn(bbim)(H2bbim)]•CH3OH}{[Mn(bbim)(H2bbim)]• H2O}}n (5) was found to be a one dimensional coordination polymer with a zig-zag chain structure. Compound [Mg(phen)(bdc)]n (6) was a guest free 3D compound and serves as a rare example of a cds-type framework. Compounds {[Ni2(bbim)(H2bbim)4]•2CH3COO•CH3CN}2 (7), {[Ni(H2bbim)3]•2Cl•2H2O} (8) and D/L-{[Cr(Hbbim)3]•3H2O} (9), were supramolecular compounds forming extended structures via extensive hydrogen-bonding with the guest molecules. The racemic compound D/L-{[Cr(Hbbim)3]•3H2O} (9) had a very unique molecular-propeller structure, in which the D/L-molecular propellers were glued together by rare water tetrahedrons. Astonishingly, the packing arrays formed by the enantiomeric propellers of one chirality were interpenetrated with those of the opposite chirality to form specific 3D supramolecular arrays with 103 nets and srs topology. This chiral discrimination and self-assembly between enantiomers of the same chirality on a supramolecular level has never been reported to date. We investigated the dielectric properties of the compounds prepared in this thesis. Compounds 1 and 4 were found to be third generation low-κ dielectric materials. The dielectric constant (κ = 2.53 at 1 MHz) of 1 was found to be comparable to zeolitic imidazolate frameworks (ZIFs). Its unique anion controlled dielectric behavior is demonstrated for the first time, in which the dielectric constant increases with increasing polarization of the anion. In addition, compound 1 was found to be a good luminescent material (with a green emission at 546 nm) and a modest non-linear optical material in which the second harmonic generation (SHG) efficiency was about twice that of SiO2. Remarkably, the κ value of compound 4 was found to be even lower than the reported ZIFs, owing to the presence of an interlayer free space and the absence of guest molecules. It is a very useful low-κ dielectric material which is highly thermally stable. Frequency dependent dielectric studies for compounds 7 and 8 revealed a significant difference in the value of dielectric constant (κ) and dielectric loss for the two compounds owing to differences in structure and the type of solvent molecules. This fundamental, structure-based study provides insights into the creation of both high and low-κ materials with the judicious selection of guest molecules.

Topic Category 基礎與應用科學 > 化學
理學院 > 化學研究所
Reference
  1. Chapter 1
    連結:
  2. 4. H. Li, M. Eddaoudi, M. O'Keeffe and O. M. Yaghi, Nature, 1999, 402, 276-279.
    連結:
  3. 5. D. M. D'Alessandro, B. Smit and J. R. Long, Angew. Chem. Int. Ed., 2010, 49, 6058-6082.
    連結:
  4. 6. D. Yuan, D. Zhao, D. Sun and H.-C. Zhou, Angew. Chem. Int. Ed., 2010, 49, 5357-5361.
    連結:
  5. 7. N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim, M. O'Keeffe and O. M. Yaghi, Science, 2003, 300, 1127-1129.
    連結:
  6. 8. S. Kitagawa, R. Kitaura and S.-I. Noro, Angew. Chem. Int. Ed., 2004, 43, 2334-2375.
    連結:
  7. 9. H. S. M. Coxeter, 1978, 466-470.
    連結:
  8. 10. O. Delgado Friedrichs, M. O'Keeffe and O. M. Yaghi, Acta Crystallogr. Sec. A, 2003, 59, 22-27.
    連結:
  9. 14. M. Eddaoudi, D. B. Moler, H. Li, B. Chen, T. M. Reineke, M. O'Keeffe and O. M. Yaghi, Acc. Chem. Res., 2001, 34, 319-330.
    連結:
  10. 15. A. R. Millward and O. M. Yaghi, J. Am. Chem. Soc., 2005, 127, 17998-17999.
    連結:
  11. 19. D. Misra, Electrochem. Soc. Interface, 2011, 20, 31.
    連結:
  12. 21. S. P. Muraka, M. Eizenberg and A. K. Sinha, Interlayer Dielectrics for Semiconductor Technologies, Elsevier, 2003.
    連結:
  13. 22. R. H. Havemann, J. A. Hutchby, Proc. IEEE, 2001, 89, 586-601.
    連結:
  14. 27. L.-Z. Chen, J. Zou, Y.-M. Gao, S. Wan and M.-N. Huang, J. Coord. Chem., 2011, 64, 715-724.
    連結:
  15. 30. K. Zagorodniy, G. Seifert and H. Hermann, Appl. Phys. Lett., 2010, 97, 251905.
    連結:
  16. 32. S. C. Sahoo, T. Kundu and R. Banerjee, J. Am. Chem. Soc., 2011, 133, 17950-17958.
    連結:
  17. 33. X. Tan, J. Zhan, J. Zhang, L. Jiang, M. Pan and C.-Y. Su, CrystEngComm, 2012, 14, 63-66.
    連結:
  18. 35. M.-X. Wang, L.-S. Long, R.-B. Huang and L.-S. Zheng, Chem. Commun., 2011, 47, 9834-9836.
    連結:
  19. 4. B. D. Josephson, Phys. Lett., 1962, 1, 251–253.
    連結:
  20. 2. L. Farrugia, J. Appl. Crystallogr., 1999, 32, 837-838.
    連結:
  21. 3. G. M. Sheldrick, SHELX–97 (including SHELXS and SHELXL), A Program for Crystal Structure Solution and Refinement; University of Gottingen: Gottingen, Germany, 1997.
    連結:
  22. 5. J. H. Nettleman, R. M. Supkowski and R. L. LaDuca, J. Solid State Chem., 2010, 183, 291-303.
    連結:
  23. 6. H. Wang, D. Zhang, D. Sun, Y. Chen, L.-F. Zhang, L. Tian, J. Jiang and Z.-H. Ni, Cryst. Growth Des., 2009, 9, 5273-5282.
    連結:
  24. 7. J. Zhang, Z. J. Li, Y. Kang, J. K. Cheng and Y. G. Yao, Inorg. Chem., 2004, 43, 8085-8091.
    連結:
  25. 8. S. K. Das, M. K. Bhunia, M. Motin Seikh, S. Dutta and A. Bhaumik, Dalton Trans., 2011, 40, 2932-2939.
    連結:
  26. 9. B. Zhou, N. J. O. Silva, F.-N. Shi, F. Palacio, L. Mafra and J. Rocha, Eur. J. Inorg. Chem., 2012, 2012, 5259-5268.
    連結:
  27. 13. S. P. Muraka, M. Eizenberg and A. K. Sinha, Interlayer Dielectrics for Semiconductor Technologies, Elsevier Science, 2003.
    連結:
  28. 14. E. A. Boudreaux and L. N. Mulay, Theory and Application of Molecular Paramagnetism, Wiley, New York, 1976.
    連結:
  29. 16. F. Cardarelli, Materials Handbook: A Concise Desktop Reference, Springer, London, 2008.
    連結:
  30. 17. R. M. Hill and L. A. Dissado, Nature, 1979, 281, 286-287.
    連結:
  31. 22. W. Zhang, Y. Cai, R.-G. Xiong, H. Yoshikawa and K. Awaga, Angew. Chem. Int. Ed., 2010, 49, 6608-6610.
    連結:
  32. 1. S. P. Muraka, M. Eizenberg and A. K. Sinha, Interlayer Dielectrics for Semiconductor Technologies, Elsevier Science, 2003.
    連結:
  33. 2. T. Ohgushi and K. Ishimaru, Phy. Chem. Chem. Phys., 2001, 3, 3229-3234.
    連結:
  34. 7. Q. Ye, D. W. Fu, H. Tian, R. G. Xiong, P. W. H. Chan and S. D. Huang, Inorg. Chem., 2008, 47, 772-774.
    連結:
  35. 8. C. H. Lee, H. Y. Huang, Y. H. Liu, T. T. Luo, G. H. Lee, S. M. Peng, J. C. Jiang, I. Chao and K. L. Lu, Inorg. Chem., 2013, 52, 3962-3968.
    連結:
  36. 10. T. T. Luo, H. C. Wu, Y. C. Jao, S. M. Huang, T. W. Tseng, Y. S. Wen, G. H. Lee, S. M. Peng and K. L. Lu, Angew. Chem. Int. Ed., 2009, 48, 9461-9464.
    連結:
  37. 13. G. M. Sheldrick, Acta Crystallogr. Sect. A, 2008, 64, 112-122.
    連結:
  38. 14. S. Lin, L. J. Chen, H. H. Xu, J. B. Su, H. Huang, Inorg. Chem. Commun, 2010, 13, 1347-1349.
    連結:
  39. 16. B. H. Yang, H. Y. Xu, Z. Z. Yang and C. Zhang, J. Mater. Chem., 2010, 20, 2469-2473.
    連結:
  40. Chapter 5
    連結:
  41. 1. R. H. Havemann and J. A. Hutchby, Proc. IEEE, 2001, 89, 586–601.
    連結:
  42. 2. K. Maex, M. R. Baklanov, D. Shamiryan, F. Iacopi, S. H. Brongersma and Z. S. Yanovitskaya, J. Appl. Phys., 2003, 93, 8793−8841; (b) W. Volksen, R. D. Miller and G. Dubois, Chem. Rev., 2010, 110, 56−110; (c) B. H. Yang, H. Y. Xu, Z. Z. Yang and C. Zhang, J. Mater Chem., 2010, 20, 2469−2473.
    連結:
  43. 3. (a) S. Eslava, L. Zhang, S. Esconjauregui, J. Yang, K. Vanstreels, M. R. Baklanov and E. Saiz, Chem. Mater., 2013, 25, 27‒33; (b) R. Farrell, T. Goshal, U. Cvelbar, N. Petkov and M. A. Morris, Electrochem. Soc. Interface, 2011, 20 (winter), 39−46.
    連結:
  44. 4. (a) N. W. Ockwig, O. Delgado-Friedrichs, M. O’Keeffe, O. M. Yaghi, Acc. Chem. Res., 2005, 38, 176−182; (b) H. Furukawa, J. Kim, N. W. Ockwig, M. O'Keeffe and O. M. Yaghi, J. Am. Chem. Soc., 2008, 130, 11650−11661; (c) G. Ferey, Chem. Soc. Rev., 2008, 37, 191−214; (d) Z. P. Deng, H. L. Qi, L. H. Huo, S. W. Ng, H. Zhao and S. Gao, Dalton Trans., 2010, 39, 10038−10050; (e) K. Kim, S. Park, K. M. Park and S. S. Lee, Cryst. Growth Des., 2011, 11, 4059−4067; (f) J. Y. Zhang, X. H. Jing, Y. Ma, A. L. Cheng and E. Q. Gao, Cryst. Growth Des., 2011, 11, 3681−3685; (g) S. Kitagawa, R. Kitaura and S. Noro, Angew. Chem., Int. Ed., 2004, 43, 2334−2375; (h) B. Zhao, P. Cheng, X. Y. Chen, C. Cheng, W. Shi, D. Z. Liao, S. P. Yan and Z. H. Jiang, J. Am. Chem. Soc., 2004, 126, 3012−3013; (i) J. L. Rowsell, E. C. Spencer, J. Eckert, J. A. K. Howard and O. M. Yaghi, Science, 2005, 309, 1350−1354. (j) J. J. Perry Iv, J. A. Perman and M. J. Zaworotko, Chem. Soc. Rev., 2009, 38, 1400–1417; (k) D. J. Tranchemontagne, J. L. Mendoza-Cortes, M. O'Keeffe, O. M. Yaghi, Chem. Soc. Rev., 2009, 38, 1257–1283.
    連結:
  45. 8. (a) T. T. Luo, H. C. Wu, Y. C. Jao, S. M. Huang, T. W. Tseng, Y. S. Wen, G. H. Lee, S. M. Peng and K. L. Lu, Angew. Chem., Int. Ed., 2009, 48, 9464−9464; (b) T. W. Tseng, T. T. Luo, C. C. Tsai, J. Y. Wu, H. L. Tsai and K. L. Lu, Eur. J. Inorg. Chem., 2010, 3750−3755; (c) J. F. Yin, J. G. Chen, J. T. Lin, D. Bhattacharya, Y. C. Hsu, H. C. Lin, K. C. Ho and K. L. Lu, J. Mater. Chem., 2012, 22, 130−139; (d) T. W. Tseng, T. T. Luo, S. Y. Chen, C. C. Su, K. M. Chi, K. L. Lu, Cryst. Growth Des., 2013, 13, 510−517; (e) J. W. Lin, P. Thanasekaran, J. S. Chang, J. Y. Wu, L. L. Lai and K. L. Lu, CrystEngComm, 2013, 15, 9798−9810; (f) T. W. Tseng, T. T. Luo, C. C. Su, H. H. Hsu, C. I. Yang and K. L. Lu, CrystEngComm, 2014, 16, 2626−2633.
    連結:
  46. 11. G. M. Sheldrick, SHELX–97 (including SHELXS and SHELXL), A Program for Crystal Structure Solution and Refinement; University of Gottingen: Gottingen, Germany, 1997
    連結:
  47. 12. G. Sheldrick, Acta Crystallogr. Sec. A, 2008, 64, 112−122.
    連結:
  48. 17. K. Zagorodniy, G. Seifert and H. Hermann, Appl. Phys. Lett., 2010, 97, 251905.
    連結:
  49. 18. X. Ren, CrystEngComm, 2012.
    連結:
  50. Chapter 6
    連結:
  51. 6. (a) T. T. Luo, H. L. Tsai, S. L. Yang, Y. H. Liu, R. D. Yadav, C. C. Su, C. H. Ueng, L. G. Lin and K. L. Lu, Angew. Chem., Int. Ed., 2005, 44, 6063−6067; (b) N. W. Ockwig, O. D. Friedrichs, M. O’Keeffe and O. M. Yaghi, Acc. Chem. Res., 2005, 38, 176−182; (c) G. Ferey, Chem. Soc. Rev., 2008, 37, 191−214; (d) M. J. Zaworotko, Nature, 2008, 451, 410−411; (e) D. J. Tranchemontagne, J. L. Mendoza-Cortes, M. O’keefe and O. M. Yaghi, Chem. Soc. Rev., 2009, 38, 1257−1283; (f) C. B. Aakeroy, N. R. Champness and C. Janiak, CrystEngComm, 2010, 12, 22−43; (g) M. O’Keeffe and O. M. Yaghi, Chem. Rev., 2012, 112, 675−702.
    連結:
  52. 11. (a) T. T. Luo, H. C. Wu, Y. C. Jao, S. M. Huang, T. W. Tseng, Y. S. Wen, G. H. Lee, S. M. Peng and K. L. Lu, Angew. Chem., Int. Ed., 2009, 48, 9461−9464; (b) T. W. Tseng, T. T. Luo, C. C. Tsai, J. Y. Wu, H. L. Tsai and K. L. Lu, Eur. J. Inorg. Chem., 2010, 3750−3755; (c) T. W. Tseng, T. T. Luo, S. Y. Chen, C. C. Su, K. M. Chi and K. L. Lu, Cryst. Growth Des., 2013, 13, 510−517; (d) J. W. Lin, P. Thanasekaran, J. S. Chang, J. Y. Wu, L. L. Lai and K. L. Lu, CrystEngComm, 2013, 15, 9798−9810; (e) T. W. Tseng, T. T. Luo, C. C. Su, H. H. Hsu, C. I. Yang and K. L. Lu, CrystEngComm, 2014, 16, 2626−2633.
    連結:
  53. 15. (a) Z. H. Zhang, Z. L. Shen, T. A. Okamura, H. F. Zhu, W. Y. Sun and N. Ueyama, Cryst. Growth Des., 2005, 5, 1191−1197; (b) L. Feng, Z. Chen, T. Liao, P. Li, Y. Jia, X. Liu, Y. Yang and Y. Zhou, Cryst. Growth Des., 2009, 9, 1505−1510; (c) Q. Hua, Y. Zhao, G. C. Xu, M. S. Chen, Z. Su, K. Cai and W. Y. Sun, Cryst. Growth Des., 2010, 10, 2553−2562; (d) Q. Yue, Q. Sun, A. L. Cheng and E. Q. Gao, Cryst. Growth Des., 2010, 10, 44−47; (e) P. C. Liang, H. K. Liu, C. T. Yeh, C. H. Lin and V. Zima, Cryst. Growth Des., 2011, 11, 699−708.
    連結:
  54. 16. (a) J. Han, C. W. Yau, C. W. Chan and T. C. W. Mak, Cryst. Growth Des., 2012, 12, 4457−4465; (b) M. H. Pham, G. T. Vuong, F. G. Fontaine and T. O. Do, Cryst. Growth Des., 2012, 12, 3091−3095; (c) J. H. Qin, L. F. Ma, Y. Hu and, L. Y. Wang, CrystEngComm, 2012, 14, 2891–2898; (d) S. N. Zhao, S. Q. Su, X. Z. Song, M. Zhu, Z. M. Hao, X. Meng, S. Y. Song and H. J. Zhang, Cryst. Growth Des., 2013, 13, 2756−2765; (e) Z. Zhang, J. F. Ma, Y. Y. Liu, W. Q. Kan and J. Yang, Cryst. Growth Des., 2013, 13, 4338−4348; (f) X. Zhang, L. Hou, B. Liu, L. Cui, Y. Y. Wang and B. Wu, Cryst. Growth Des., 2013, 13, 3177−3187.
    連結:
  55. 18. (a) S. Mendiratta, M. Usman, T. T. Luo, B. C. Chang, S. F. Lee, Y. C. Lin and K. L. Lu, Cryst. Growth Des., 2014, 14, 1572–1579; (b) S. Mendiratta, M. Usman, T. T. Luo, S. F. Lee, Y. C. Lin and K. L. Lu, CrystEngComm, 2014, 16, 6309–6315; (c) M. Usman, C. H. Lee, D. S. Hung, S. F. Lee, C. C. Wang, T. T. Luo, L. Zhao, M. K. Wu and K. L. Lu, J. Mater. Chem. C, 2014, 2, 3762−3768.
    連結:
  56. Chapter 7
    連結:
  57. 4. K. Liu, Y. Yao, Y. Kang, Y. Liu, Y. Han, Y. Wang, Z. Li and X. Zhang, Sci. Rep., 2013, 3, 1‒7.
    連結:
  58. 5. J. H. R. Tucker, in Supramolecular Chemistry, John Wiley & Sons, Ltd, 2012.
    連結:
  59. 7. J. V. Gavette, N. S. Mills, L. N. Zakharov, C. A. Johnson, D. W. Johnson and M. M. Haley, Angew. Chem. Int. Ed., 2013, 52, 10270‒10274.
    連結:
  60. 8. C. Gao, S. Silvi, X. Ma, H. Tian, A. Credi and M. Venturi, Chem. Eur. J., 2012, 18, 16911‒16921.
    連結:
  61. 10. Z. J. Wang, K. N. Clary, R. G. Bergman, K. N. Raymond and F. D. Toste, Nat. Chem., 2013, 5, 100‒103.
    連結:
  62. 11. J. Meeuwissen and J. N. H. Reek, Nat. Chem., 2010, 2, 615‒621.
    連結:
  63. 13. D. Kaufmann and R. Boese, Angew. Chem. Int. Ed., 1990, 29, 545‒546.
    連結:
  64. 14. F. Herbst, D. Dohler, P. Michael and W. H. Binder, Macromol. Rapid Commun., 2013, 34, 203‒220.
    連結:
  65. 18. S. Matile and N. Sakai, in Analytical Methods in Supramolecular Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, 2012, 711‒742.
    連結:
  66. 19. T. M. Fyles, Chem. Soc. Rev., 2007, 36, 335‒347.
    連結:
  67. 20. P. Talukdar, G. Bollot, J. Mareda, N. Sakai and S. Matile, Chem. Eur. J., 2005, 11, 6525‒6532.
    連結:
  68. 21. T.-T. Luo, H.-C. Wu, Y.-C. Jao, S.-M. Huang, T.-W. Tseng, Y.-S. Wen, G.-H. Lee, S.-M. Peng, and K.-L. Lu, Angew. Chem. Int. Ed., 2009, 48, 9461‒9464.
    連結:
  69. 22. H. J. Schneider, Applications of Supramolecular Chemistry for 21st Century Technology, Taylor & Francis, 2012.
    連結:
  70. 23. A. B. Descalzo, R. Martinez-Manez, F. Sancenon, K. Hoffmann and K. Rurack, Angew. Chem. Int. Ed., 2006, 45, 5924‒5948.
    連結:
  71. 24. Y.-Z. Tang, X.-F. Huang, Y.-M. Song, P. W. H. Chan and R.-G. Xiong, Inorg. Chem., 2006, 45, 4868‒4870.
    連結:
  72. 27. K. Zagorodniy, G. Seifert and H. Hermann, Appl. Phys. Lett., 2010, 97, 251905.
    連結:
  73. 31. R. J. Cava, J. Mater. Chem., 2001, 11, 54‒62.
    連結:
  74. 36. C.-M. Leu, Y.-T. Chang and K.-H. Wei, Chem. Mater., 2003, 15, 3721‒3727.
    連結:
  75. 44. S.-H. Lin, C.-I. Yang, T.-S. Kuo, M.-H. Chiang, K.-C. Hsu and K.-L. Lu, Dalton Trans., 2012, 41, 1448‒1450.
    連結:
  76. 46. P. Thanasekaran, T.-T. Luo, C.-H. Lee and K.-L. Lu, J. Mater. Chem., 2011, 21, 13140‒13149.
    連結:
  77. 47. G. M. Sheldrick, Acta Crystallogr. A, 2008, 64, 112‒122.
    連結:
  78. 48. L. Farrugia, J. Appl. Crystallogr., 1999, 32, 837‒838.
    連結:
  79. 50. Y.-R. Zhong, M.-L. Cao, H.-J. Mo and B.-H. Ye, Cryst. Growth Des., 2008, 8, 2282‒2290.
    連結:
  80. 51. H. Frohlich, Theory of dielectrics: dielectric constant and dielectric loss, Clarendon Press, 1958.
    連結:
  81. Chapter 8
    連結:
  82. [6] Water aggegates: a) T. Head-Gordon, M. E. Johnson, Proc. Nat. Acad. Sci. U. S.A. 2006, 103, 7973-7977; b) P. Rodriguez-Cuamatzi, G. Vargas-Diaz, H. Hopfl, Angew. Chem., 2004, 116, 3103-3106; Angew. Chem. Int. Ed., 2004, 43, 3041-3044; c) R. Ludwig, Angew. Chem. 2001, 113, 1856-1876; Angew. Chem. Int. Ed. 2001, 40, 1808-1827; d) J. L. Atwood, L. J. Barbour, T. J. Ness, C. L. Raston, P. L. Raston, J. Am. Chem. Soc., 2001, 123, 7192-7193; e) U. Buck, F. Huisken, Chem. Rev., 2000, 100, 3863-3890; f) W. B. Blanton, S. W. Gordon-Wylie, T. J. Collins, G. R. Clark, K. D. Jordan, J. T. Wood, U. Geiser, J. Am. Chem. Soc., 1999, 121, 3551-3552; g) L. R. MacGillivray, J. L. Atwood, J. Am. Chem. Soc., 1997, 119, 2592-2593.
    連結:
  83. [7] Theoritical studies on small water aggregates: a) M. Mascal, L. Infantes, J. Chisholm, Angew. Chem., 2006, 118, 36-41; Angew. Chem. Int. Ed., 2006, 45, 32-36; b) A. Muller, E. Krickemeyer, H. Bogge, M. Schmidtmann, B. Botar, M. O. Talismanova, Angew. Chem., 2003, 115, 2131-2136; Angew. Chem. Int. Ed., 2003, 42, 2085-2090; c) C. Janiak, T. G. Scharmann, S. A. Mason, J. Am. Chem. Soc. 2002, 124, 14010-14011; d) J. M. Ugalde, I. Alkorta, J. Elguero, Angew. Chem., 2000, 112, 733-737; Angew. Chem. Int. Ed., 2000, 39, 717-721; e) K. Kim, K. D. Jordan, T. S. Zwier, J. Am. Chem. Soc., 1994, 116, 11568-11569; f) S. W. Benson, E. D. Siebert, J. Am. Chem. Soc., 1992, 114, 4269-4276.
    連結:
  84. [9] Experimentally observed tetrahedral water aggregates: a) G. Jiang, J. Bai, H. Xing, Y. Li, X. You, Cryst. Growth Des., 2006, 6, 1264-1266; b) P. Yang, H.-Y. Zhou, K. Zhang, B.-H. Ye, CrystEngComm, 2011, 13, 5658-5660.
    連結:
  85. 1. A. U. Czaja, N. Trukhan and U. Muller, Chem. Soc. Rev., 2009, 38, 1284-1293.
  86. 2. R. J. Kuppler, D. J. Timmons, Q.-R. Fang, J.-R. Li, T. A. Makal, M. D. Young, D. Yuan, D. Zhao, W. Zhuang and H.-C. Zhou, Coord. Chem. Rev., 2009, 253, 3042-3066.
  87. 3. H. Furukawa, K. E. Cordova, M. O’Keeffe and O. M. Yaghi, Science, 2013, 341, 1230444.
  88. 11. J. Long, Lecture, Taiwan, 2012.
  89. 12. O. Delgado-Friedrichs, M. O'Keeffe and O. M. Yaghi, Acta Crystallogr. Sec. A, 2006, 62, 350-355.
  90. 13. D. J. Tranchemontagne, J. L. Mendoza-Cortes, M. O'Keeffe and O. M. Yaghi, Chem. Soc. Rev., 2009, 38, 1257-1283.
  91. 16. H. Furukawa, N. Ko, Y. B. Go, N. Aratani, S. B. Choi, E. Choi, A. O. Yazaydin, R. Q. Snurr, M. O’Keeffe, J. Kim and O. M. Yaghi, Science, 2010, 329, 424-428.
  92. 17. L. Ma, J. M. Falkowski, C. Abney and W. Lin, Nat. Chem., 2010, 2, 838-846.
  93. 18. P. S. Neelakanta, Handbook of Electromagnetic Materials: Monolithic and Composite Versions and Their Applications, Taylor & Francis, 1995.
  94. 20. See, http://www.doitpoms.ac.uk, polarization mechanisms.
  95. 23. S. Eslava, L. Zhang, S. Esconjauregui, J. Yang, K. Vanstreels, M. R. Baklanov and E. Saiz, Chem. Mat., 2013, 25, 27-33.
  96. 24. F. Wang, C.-Y. Ni, Q. Liu, F.-L. Li, J. Shi, H.-X. Li and J.-P. Lang, Chem. Commun., 2013, 49, 9248-9250.
  97. 25. P. Yang, X. He, M.-X. Li, Q. Ye, J.-Z. Ge, Z.-X. Wang, S.-R. Zhu, M. Shao and H.-L. Cai, J. Mater. Chem., 2012, 22, 2398-2400.
  98. 26. V. Di Noto, A. B. Boeer, S. Lavina, C. A. Muryn, M. Bauer, G. A. Timco, E. Negro, M. Rancan, R. E. P. Winpenny and S. Gross, Adv. Funct. Mater., 2009, 19, 3226-3236.
  99. 28. W. Wang, D.-W. Fu, X.-B. Xu and Q. Ye, Z. Anorg. Allg. Chem., 2011, 637, 467-471.
  100. 29. B.-H. Yang, H.-Y. Xu, Z.-Z. Yang and C. Zhang, J. Mater. Chem., 2010, 20, 2469-2473.
  101. 31. M. J. Ingleson, J. Bacsa and M. J. Rosseinsky, Chem. Commun., 2007, 3036-3038.
  102. 34. F. Song, C. Wang and W. Lin, Chem. Commun., 2011, 47, 8256-8258.
  103. Chapter 2
  104. 1. W. L. Bragg, Proc. Camb. Philos. Soc., 1913, 17, 43–57.
  105. 2. P. S. Neelakanta, Handbook of Electromagnetic Materials: Monolithic and Composite Versions and Their Applications, Taylor & Francis, 1995.
  106. 3. S. K. Kurtz and T. T. Perry, J. Appl. Phys., 1968, 39, 3798–3813.
  107. Chapter 3
  108. 1. P. Yang, X. He, M.-X. Li, Q. Ye, J.-Z. Ge, Z.-X. Wang, S.-R. Zhu, M. Shao and H.-L. Cai, J. Mater. Chem., 2012, 22, 2398-2400.
  109. 4. Z. Z. Li, L. Du, J. Zhou, M. R. Zhu, F. H. Qian, J. Liu, P. Chen and Q. H. Zhao, Dalton Trans, 2012, 41, 14397-14403.
  110. 10. F. Luo, M.-S. Wang, M.-B. Luo, G.-M. Sun, Y.-M. Song, P.-X. Li and G.-C. Guo, Chem. Commun., 2012, 48, 5989-5991.
  111. 11. S. K. Kurtz, J. Appl. Phys., 1968, 39, 3798.
  112. 12. P. S. Neelakanta, Handbook of Electromagnetic Materials: Monolithic and Composite Versions and Their Applications, Taylor & Francis, 1995.
  113. 15. B. Hoefflinger, Chips 2020, ed. B. Hoefflinger, Springer, Berlin, Heidelberg, 2012.
  114. 18. I. W. Feng, W. Zhao, J. Li, J. Lin, H. Jiang and J. Zavada, Appl. Optics, 2013, 52, 5426-5429.
  115. 19. R. J. Sengwa and Shobhna Choudhary, Indian J. Pure Appl. Phys., 2011, 49, 204-213.
  116. 20. C. J. F. Bottcher, O. C. van Belle, P. Bordewijk, A. Rip and D. D. Yue, J. Electrochem. Soc., 1974, 121, 211C.
  117. 21. T. Akutagawa, H. Koshinaka, D. Sato, S. Takeda, S.-I. Noro, H. Takahashi, R. Kumai, Y. Tokura and T. Nakamura, Nat. Mater., 2009, 8, 342-347.
  118. Chapter 4
  119. 3. V. Changrue, V. Orsat, G. S. V. Raghavan and D. Lyew, J. Food Engi., 2008, 88, 280-286.
  120. 4. M. Usman, C. H. Lee, D. S. Hung, S. F. Lee, C. C. Wang, T. T. Luo, L. Zhao, M. K. Wu and K. L. Lu, J. Mater. Chem. C, 2014, 2, 3762-3768.
  121. 5. Z. R. Qu, Q. Ye, H. Zhao, D. W. Fu, H. Y. Ye, R. G. Xiong, T. Akutagawa and T. Nakamura, Chem. Eur. J., 2008, 14, 3452-3456.
  122. 6. Y. Z. Tang, X. F. Huang, Y. M. Song, P. W. Hong Chan and R. G. Xiong, Inorg. Chem., 2006, 45, 4868-4870.
  123. 9. S. Mendiratta, M. Usman, T. T. Luo, S. F. Lee, Y. C. Lin and K. L. Lu, CrystEngComm, 2014, 16, 6309-6315.
  124. 11. S. Mendiratta, M. Usman, T.-T. Luo, B.-C. Chang, S.-F. Lee, Y.-C. Lin and K.-L. Lu, Cryst. Growth Des., 2014, 14, 1572-1579.
  125. 12. P. Thanasekaran, T.-T. Luo, J.-Y. Wu and K.-L. Lu, Dalton Trans., 2012, 41, 5437-5453.
  126. 15. S. Eslava, L. Zhang, S. Esconjauregui, J. Yang, K. Vanstreels, M. R. Baklanov and E. Saiz, Chem. Mater., 2013, 25, 27-33.
  127. 5. (a) R. S. Forgan, R. A. Smaldone, J. J. Gassensmith, H. Furukawa, D. B. Cordes, Q. W. Li, C. E. Wilmer, Y. Y. Botros, R. Q. Snurr, A. M. Z. Slawin and J. F. Stoddart, J. Am. Chem. Soc., 2012, 134, 406–417; (b) X. P. Zhou, M. Li, J. Liu and D. Li, J. Am. Chem. Soc., 2012, 134, 67–70; (c) S. L. Cai, S. R. Zheng; Z. Z. Wen; J. Fan and W. G. Zhang, Cryst. Growth Des., 2012, 12, 2355–2361; (d) O. K. Farha, C. E. Wilmer, I. Eryazici, B. G. Hauser, P. A. Parilla, K. O’Neill, A. A. Sarjeant, S. B. T. Nguyen, R. Q. Snurr and J. T. Hupp, J. Am. Chem. Soc., 2012, 134, 9860–9863; (e) M. C. Das, Q. S. Guo, Y. B. He, J. Kim, C. G. Zhao, K. L. Hong, S. C. Xiang, Z. J. Zhang, K. M. Thomas, R. Krishna and B. L. Chen, J. Am. Chem. Soc., 2012, 134, 8703–8710; (d) J. S. Hu, X. Q. Yao, M. D. Zhang, L. Qin, Y. Z. Li, Z. J. Guo, H. G. Zheng and Z. L. Xue, Cryst. Growth Des., 2012, 12, 3426–3435; (e) J. R. Li, A. A. Yakovenko, W. G. Lu, D. J. Timmons, W. J. Zhuang, D. Q. Yuan and H. C. Zhou, J. Am. Chem. Soc., 2010, 132, 17599–17610; (f) K. Koh, A. G. Wong-Foy and A. Matzger, J. Am. Chem. Soc., 2010, 132, 15005–15010; (g) S. I. Swamy, J. Bacsa, J. T. A. Jones, K. C. Stylianou, A. Steiner, L. K. Ritchie, T. Hasell, J. A. Gould, A. Laybourn, Y. Z. Khimyak, D. J. Adams, M. J. Rosseinsky and A. I. Cooper, J. Am. Chem. Soc., 2010, 132, 12773−12775.
  128. 6. S. Mendiratta, M. Usman, T.-T. Luo, B.-C. Chang, S.-F. Lee, Y.-C. Lin and K.-L. Lu, Cryst. Growth Des., 2014, 14, 1572−1579.
  129. 7. J. L. Hedrick, R. D. Miller, C. J. Hawker, K. R. Carter, W. Volksen, D. Y. Yoon and M. Trollsas, Adv. Mater., 1998, 10, 1049−1053.
  130. 9. J. Yin and R. L. Elsenbaumer, J. Org. Chem., 2005, 70, 9436−9446.
  131. 10. Bruker (2001). SMART and SAINT (Apex2 Version 1.0-27). Bruker AXS Inc., Madison, Wisconsin, USA.
  132. 13. a) Y.-C. Guo, S.-Y. Chen, X.-Y. Bao, D.-F. Qiu, Y.-Q. Feng, Chin. J. Struct. Chem., 2011, 30, 1791–1797; b) C.-S. Ling, L. Yan, Acta Cryst., 2008, E64, m1399. c) T. Wu, L.-H. Weng, G.-X. Jin, Chem. Commun., 2012, 48, 4435–4437; d) H.-J. Mo, Y.-L. Niu, M. Zhang, Z.-P. Qiao, B.-H. Ye, Dalton Trans., 2011, 40, 8218–8225; e) Y.-R. Zhong, M.-L. Cao, H.-J. Mo, B.-H. Ye, Cryst. Growth Des., 2008, 8, 2282–2290; f) C.-K. Xia, C.-Z. Lu, D.-Q. Yuan, Q.-Z. Zhang, X.-Y. Wu, S.-C. Xiang, J.-J. Zhang, D.-M. Wu, CrystEngComm, 2006, 8, 281–291; g) L. Wen, Y. Li, D. Dang, Z. Tian, Z. Ni, Q. Meng, J. Solid State Chem., 2005, 178, 3336–3341.
  133. 14. B. B. Ding, Y. Q. Weng, Z. W. Mao, C. K. Lam, X. M. Chen and B. H. Ye, Inorg. Chem., 2005, 44, 8836–8845.
  134. 15. (a) C. J. F. Botcher and P. Bordewijk, Theory of Electric Polarization, 2nd Ed., Elsevier, Amsterdam, 1978; (b) H. Frolich, Theory of Dielectrics, 2nd Ed., Oxford University Press, Oxford, 1958.
  135. 16. W. Volksen, R. D. Miller and G. Dubois, Chem. Rev, 2010, 110, 56−110;
  136. 19. B. B. Ding, Y. Q. Weng, Z. W. Mao, C. K. Lam, X. M. Chen and B. H. Ye, Inorg. Chem., 2005, 44, 8836-8845.
  137. 20. Y. R. Zhong, M. L. Cao, H. J. Mo and B. H. Ye, Cryst. Growth Des., 2008, 8, 2282–2290.
  138. 21. (a) O. Kahn, Molecular Magnetism, VCH, Weinheim 1993; (b) P. Panissod, M. Drillon, Magnetic Ordering due to Dipolar Interaction in Low Dimensional Materials, in Magnetism: Molecules to Materials IV: Nanosized Magnetic Materials, Wiley-VCH, 2002.
  139. 1. (a) B. H. Yang, H. Y. Xu, Z. Z. Yang and C. Zhang, J. Mater. Chem., 2010, 20, 2469−2473; (b) S. Eslava, J. Urrutia, A. N. Busawon, M. R. Baklanov, F. Iacopi, S. Aldea, K. Maex, J. A. Martens and C. E. A. Kirschhock, J. Am. Chem. Soc., 2008, 130, 17528−17536; (c) B. D. Hatton, K. Landskron, W. J. Hunks, M. R. Bennett, D. Shukaris, D. D. Perovic and G. A. Ozin, Mater. Today, 2006, 9, 22−31; (d) T. M. Long and T. M. Swager, J. Am. Chem. Soc., 2003, 125, 14113−14119; (e) S. P. Muraka, Interlayer Dielectrics for Semiconductor Technologies, Academic Press, 2003.
  140. 2. (a) S. Ma, Y. Wang, Z. Min and L. Zhong, Adv. Polym. Tech., 2013, 32, 21358; (b) W. Volksen, R. D. Miller and G. Dubois, Chem. Rev., 2010, 110, 56−110; (c) M. Baklanov, K. Maex and M. Green, Dielectric Films for Advanced Microelectronics, Wiley, 2007; (d) K. Maex, M. R. Baklanov, D. Shamiryan, F. Iacopi, S. H. Brongersma and Z. S. Yanovitskaya, J. Appl. Phys., 2003, 93, 8793−8841; (e) M. Morgen, E. T. Ryan, J. H. Zhao, C. Hu, T. Cho and P. S. Ho, Annu. Rev. Mater. Sci., 2000, 30, 645−680.
  141. 3. (a) M. O’Keeffe, Nature, 1999, 400, 617−618; (b) Y. S. Bae and R. Q. Snurr, Angew. Chem., Int. Ed., 2011, 50, 11586−11596; (c) M. Maes, M. Trekels, M. Boulhout, S. Schouteden, F. Vermoortele, L. Alaerts, D. Heurtaux, Y. K. Seo, Y. K. Hwang, J. S. Chang, I. Beurroies, R. Denoyel, K. Temst, A. Vantomme, P. Horcajada, C. Serre and D. E. De Vos, Angew. Chem., Int. Ed., 2011, 50, 4210−4214; (d) M. P. Suh, H. J. Park, T. K. Prasad and D. W. Lim, Chem. Rev., 2012, 112, 782−835; (e) K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T. H. Bae and J. R. Long, Chem. Rev., 2012, 112, 724−781; (f) Y. B. He, W. Zhou, R. Krishna and B. L. Chen, Chem. Commun., 2012, 48, 11813−11831.
  142. 4. (a) Z. R. Herm, J. A. Swisher, B. Smit, R. Krishna and J. R. Long, J. Am. Chem. Soc., 2011, 133, 5664−5667; (b) J. R. Li, J. Sculley and H. C. Zhou, Chem. Rev., 2012, 112, 869−932; (c) E. Jeong, W. R. Lee, D. W. Ryu, Y. Kim, W. J. Phang, E. K. Koh and C. S. Hong, Chem. Commun., 2013, 49, 2329−2331; (d) L. C. Lin, J. Kim, X. Kong, E. Scott, T. M. McDonald, J. R. Long, J. A. Reimer and B. Smit, Angew. Chem., Int. Ed., 2013, 52, 4410−4413; (e) W. M. Bloch, R. Babarao, M. R. Hill, C. J. Doonan and C. J. Sumby, J. Am. Chem. Soc., 2013, 135, 10441−10448.
  143. 5. (a) J. Y. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen and J. T. Hupp, Chem. Soc. Rev., 2009, 38, 1450−1459; (b) A. Corma, H. Garcia and F. X. Llabres i Xamena, Chem. Rev., 2010, 110, 4606−4655; (c) C. H. Kuo, Y. Tang, L. Y. Chou, B. T. Sneed, C. N. Brodsky, Z. Zhao and C. K. Tsung, J. Am. Chem. Soc., 2012, 134, 14345−14348; (d) M. Yoon, R. Srirambalaji and K. Kim, Chem. Rev., 2012, 112, 1196−1231; (e) G. Kumar and R. Gupta, Inorg. Chem., 2013, 52, 10773−10787; (f) Y. Liu, K. Mo and Y. Cui, Inorg. Chem., 2013, 52, 10286−10291.
  144. 7. (a) Q. Chen, P. C. Guo, S. P. Zhao, J. L. Liu and X. M. Ren, CrystEngComm, 2013, 15, 1264−1270; (b) S. Eslava, L. Zhang, S. Esconjauregui, J. Yang, K. Vanstreels, M. R. Baklanov and E. Saiz, Chem. Mater., 2013, 25, 27−33; (c) P. Yang, X. He, M. X. Li, Q. Ye, J. Z. Ge, Z. X. Wang, S. R. Zhu, M. Shao and H. L. Cai, J. Mater. Chem., 2012, 22, 2398−2400; (d) R. J. Xu, D. W. Fu, J. Dai, Y. Zhang, J. Z. Ge and H. Y. Ye, Inorg. Chem. Commun., 2011, 14, 1093−1096; (e) D. W. Fu, J. Dai, J. Z. Ge, H. Y. Ye and Z. R. Qu, Inorg. Chem. Commun., 2010, 13, 282−285; (f) K. Zagorodniy, G. Seifert and H. Hermann, Appl. Phys. Lett., 2010, 97, 251905.
  145. 8. (a) L. Han, L. Qin, X. Z. Yan, L. P. Xu, J. Sun, L. Yu, H. B. Chen and X. Zou, Cryst. Growth Des., 2013, 13, 18078. (a) L. Han, L. Qin, X. Z. Yan, L. P. Xu, J. Sun, L. Yu, H. B. Chen and X. Zou, Cryst. Growth Des., 2013, 13, 1807-1811; (b) Q. Lin, T. Wu, S. T. Zheng, X. Bu and P. Feng, Chem. Commun., 2011, 47, 11852-11854; (c) Z. F. Wu, B. Hu, M. L. Feng, X. Y. Huang and Y. B. Zhao, Inorg. Chem. Commun., 2011, 14, 1132-1135; (d) A. Mallick, S. Saha, P. Pachfule, S. Roy and R. Banerjee, J. Mater. Chem., 2010, 20, 9073-9080; (e) H. K. Liu, T. H. Tsao, C. H. Lin and V. Zima, CrystEngComm, 2010, 12, 1044-1047; (f) Y. E. Cheon, J. Park and M. P. Suh, Chem. Commun., 2009, 5436-5438; (g) Z. Guo, G. Li, L. Zhou, S. Su, Y. Lei, S. Dang and H. Zhang, Inorg. Chem., 2009, 48, 8069-8071.
  146. 9. (a) H. K. Liu, T. H. Tsao, Y. T. Zhang and C. H. Lin, CrystEngComm, 2009, 11, 1462-1468; (b) C. A. Williams, A. J. Blake, C. Wilson, P. Hubberstey and M. Schroder, Cryst. Growth Des., 2008, 8, 911-922; (c) A. Rossin, A. Ienco, F. Costantino, T. Montini, B. Di Credico, M. Caporali, L. Gonsalvi, P. Fornasiero and M. Peruzzini, Cryst. Growth Des., 2008, 8, 3302-3308; (d) P. D. C. Dietzel, R. Blom and H. Fjellvag, Eur. J. Inorg. Chem., 2008, 3624-3632; (e) R. P. Davies, R. J. Less, P. D. Lickiss and A. J. White, Dalton Trans., 2007, 2528-2535; (f) S. Ma, J. A. Fillinger, M. W. Ambrogio, J. L. Zuo and H. C. Zhou, Inorg. Chem. Commun., 2007, 10, 220-222.
  147. 10. (a) B. Pato-Doldan, M. Sanchez-Andujar, L. C. Gomez-Aguirre, S. Yanez-Vilar, J. Lopez-Beceiro, C. Gracia-Fernandez, A. A. Haghighirad, F. Ritter, S. Castro-Garcia and M. A. Senaris-Rodriguez, Phys. Chem. Chem. Phys., 2012, 14, 8498−8501; (b) R. Shang, G. C. Xu, Z. M. Wang and S. Gao, Chem. Eur. J., 2014, 20, 1146−1158.
  148. 12. (a) G. M. Sheldrick, Acta Cryst., 2008, A64, 112−122; (b) G. M. Sheldrick, SHELXS-97, Programs for X-ray Crystal Structure Solution; University of Gottingen: Gottingen, Germany, 1997.
  149. 13. (a) Q. Yue, Q. Sun, A. L. Cheng and E. Q. Gao, Crystal Growth Des., 2010, 10, 44–47; (b) X. Q. Wang, L. M. Liu, T. Makarenko and A. J. Jacobson, Cryst. Growth Des., 2010, 10, 1960−1965; (c) A. D. Burrows, L. C. Fisher, C. Richardsonac and S. P. Rigby, Chem. Commun., 2011, 47, 3380–3382; (d) D. Y. Ma, Y. W. Li and Z, Li, Chem. Commun., 2011, 47, 7377–7379; (e) Q. Guo, C. Xu, B. Zhao, Y. Jia, H. Hou and Y. Fan, Cryst. Growth Des., 2012, 12, 5439−5446.
  150. 14. (a) T. Lee, Z. X. Liu and H. L. Lee, Cryst. Growth Des., 2011, 11, 4146−4154; (b) I. Mihalcea, N. Henry, T. Bousqet, C. Volkringer and T. Loiseau, Cryst. Growth Des., 2012, 12, 4641−4648; (c) K. Tan, P. Canepa, Q. Gong, J. Liu, D. H. Johnson, A. Dyevoich, P. K. Thallapally, T. Thonhauser, J. Li and Y. J. Chabal, Chem. Mater., 2013, 25, 4653−4662.
  151. 17. (a) G. Yang, P. C. Duan, K. G. Shi and R. G. Raptis, Cryst. Growth Des., 2012, 12, 1882–1889; (b) S. L. Cai, S. R. Zheng, Z. Z. Wen, J. Fan and W. G. Zhang, Cryst. Growth Des., 2012, 12, 2355–2361; (c) M. Deniz, I. Hernandez-Rodriguez, J. Pasan, O. Fabelo, L. Canadillas-Delgado, C. Yuste, M. Julve, F. Lloret and C. Ruiz-Perez, Cryst. Growth Des., 2012, 12, 4505–4518; (d) Q. Yang, X. Chen, J. Cui, J. Hu, M. Zhang, L. Qin, G. Wang, Q. Lu and H. Zheng, Cryst. Growth Des., 2012, 12, 4072–4082; (e) D. Sun, M. Z. Xu, S. S. Liu, S. Yuan, H. F. Lu, S. Y. Feng and D. F. Sun, Dalton Trans., 2013, 42, 12324–12333; (f) J. Zhou, L. Du, Y. F. Qiao, Y. Hu, B. Li, L. Li, X. Y. Wang, J. Yang, M. J. Xie and Q. H. Zhao, Cryst. Growth Des., 2014, 14, 1175−1183; (g) Z. Q. Shi, Y. Z. Li, Z. J. Guo and H. G. Zheng, CrystEngComm, 2014, 16, 900−909.
  152. 1. N. A. Esipenko, P. Koutnik, T. Minami, L. Mosca, V. M. Lynch, G. V. Zyryanov and P. Anzenbacher, Chem. Sci., 2013, 4, 3617‒3623.
  153. 2. Y. Liu, T. Minami, R. Nishiyabu, Z. Wang and P. Anzenbacher, J. Am. Chem. Soc., 2013, 135, 7705‒7712.
  154. 3. T. Minami, N. A. Esipenko, B. Zhang, M. E. Kozelkova, L. Isaacs, R. Nishiyabu, Y. Kubo and P. Anzenbacher, J. Am. Chem. Soc., 2012, 134, 20021‒20024.
  155. 6. A. B. Wolk, E. Garand, I. M. Jones, A. D. Hamilton and M. A. Johnson, J. Phys. Chem. A, 2013, 117, 5962‒5969.
  156. 9. R. Klajn, J. F. Stoddart and B. A. Grzybowski, Chem. Soc. Rev., 2010, 39, 2203‒2237.
  157. 12. P. Axe, S. D. Bull, M. G. Davidson, M. D. Jones, D. E. J. E. Robinson, W. L. Mitchell and J. E. Warren, Dalton Trans., 2009, 10169‒10171.
  158. 15. L. R. Hart, J. L. Harries, B. W. Greenland, H. M. Colquhoun and W. Hayes, Polym. Chem., 2013, 4, 4860‒4870.
  159. 16. T. Aida, E. W. Meijer and S. I. Stupp, Science, 2012, 335, 813‒817.
  160. 17. M. Burnworth, L. Tang, J. R. Kumpfer, A. J. Duncan, F. L. Beyer, G. L. Fiore, S. J. Rowan and C. Weder, Nature, 2011, 472, 334‒337.
  161. 25. Z. R. Qu, Q. Ye, H. Zhao, D. W. Fu, H. Y. Ye, R. G. Xiong, T. Akutagawa and T. Nakamura, Chem. Eur. J., 2008, 14, 3452‒3456.
  162. 26. T. Hang, D.-W. Fu, Q. Ye, H.-Y. Ye, R.-G. Xiong and S. D. Huang, Cryst. Growth Des., 2009, 9, 2054‒2056.
  163. 28. W.-J. Ji, Q.-G. Zhai, S.-N. Li, Y.-C. Jiang and M.-C. Hu, Chem. Commun., 2011, 47, 3834‒3836.
  164. 29. P. Yang, X. He, M.-X. Li, Q. Ye, J.-Z. Ge, Z.-X. Wang, S.-R. Zhu, M. Shao and H.-L. Cai, J. Mater. Chem., 2012, 22, 2398‒2400.
  165. 30. S. Eslava, L. Zhang, S. Esconjauregui, J. Yang, K. Vanstreels, M. R. Baklanov and E. Saiz, Chem. Mater., 2013, 25, 27‒33.
  166. 32. K. Maex, M. R. Baklanov, D. Shamiryan, F. lacopi, S. H. Brongersma and Z. S. Yanovitskaya, J. Appl. Phys., 2003, 93, 8793‒8841.
  167. 33. W. Volksen, R. D. Miller and G. Dubois, Chem. Rev., 2009, 110, 56‒110.
  168. 34. B.-H. Yang, H.-Y. Xu, Z.-Y. Yang and C. Zhang, J. Mater. Chem., 2010, 20, 2469‒2473.
  169. 35. Y. Zhou, C. Tian, S. Meng, Z. Yue and L. Li, J. Am. Cer. Soc., 2012, 95, 1665‒1670.
  170. 37. M. Sanchez-Andujar, S. Yanez-Vilar, B. Pato-Doldan, C. Gomez-Aguirre, S. Castro-Garcia and M. A. Senaris-Rodriguez, J. Phys. Chem. C, 2012, 116, 13026‒13032.
  171. 38. D.-W. Fu, J. Dai, J.-Z. Ge, H.-Y. Ye and Z.-R. Qu, Inorg. Chem. Commun., 2010, 13, 282‒285.
  172. 39. R.-J. Xu, D.-W. Fu, J. Dai, Y. Zhang, J.-Z. Ge and H.-Y. Ye, Inorg. Chem. Commun., 2011, 14, 1093‒1096.
  173. 40. J.-W. Lin, P. Thanasekaran, J.-S. Chang, J.-Y. Wu, L.-L. Lai and K.-L. Lu, CrystEngComm, 2013, 15, 9798‒9810.
  174. 41. J.-F. Yin, J.-G. Chen, J.-T. Lin, D. Bhattacharya, Y.-C. Hsu, H.-C. Lin, K.-C. Ho and K.-L. Lu, J. Mater. Chem., 2012, 22, 130‒139.
  175. 42. J.-Y. Wu, S.-M. Huang, Y.-C. Huang and K.-L. Lu, CrystEngComm, 2012, 14, 1189‒1192.
  176. 43. P. Thanasekaran, T.-T. Luo, J.-Y. Wu and K.-L. Lu, Dalton Trans., 2012, 41, 5437‒5453.
  177. 45. C.-I. Yang, P.-H. Chuang and K.-L. Lu, Chem. Commun., 2011, 47, 4445‒4447.
  178. 49. A. A. Ayi, A. Choudhury, S. Natarajan and C. N. R. Rao, New J. Chem., 2001, 25, 213‒215.
  179. 52. C. J. F. Bottcher, O. C. van Belle, P. Bordewijk and A. Rip, Theory of electric polarization, Elsevier Scientific Pub. Co., 1978.
  180. 53. P. Jain, N. S. Dalal, B. H. Toby, H. W. Kroto and A. K. Cheetham, J. Am. Chem. Soc., 2008, 130, 10450‒10451.
  181. 54. P. Jain, V. Ramachandran, R. J. Clark, H. D. Zhou, B. H. Toby, N. S. Dalal, H. W. Kroto and A. K. Cheetham, J. Am. Chem. Soc., 2009, 131, 13625‒13627.
  182. 55. Q. Chen, P.-C. Guo, S.-P. Zhao, J.-L. Liu and X.-M. Ren, CrystEngComm, 2013, 15, 1264‒1270.
  183. 56. S. C. R. J. Sengwa, Indian J. Pure Appl. Phys., 2011, 49, 204‒213.
  184. [1] a) Z. J. Wang, K. N. Clary, R. G. Bergman, K. N. Raymond, F. D. Toste, Nat. Chem., 2013, 5, 100-103; b) U. Luning, Angew. Chem., 2013, 125, 4823-4823; Angew. Chem. Int. Ed., 2013, 52, 4724-4724; c) B. C. K. Tee, C. Wang, R. Allen, Z. Bao, Nat. Nano., 2012, 7, 825-832; d) M. O. Blunt, J. C. Russell, C. Gimenez-LopezMaria del, N. Taleb, X. Lin, M. Schroder, N. R. Champness, P. H. Beton, Nat. Chem., 2011, 3, 74-78; e) S. Mann, Nat. Mater., 2009, 8, 781-792; f) J. Adisoejoso, K. Tahara, S. Okuhata, S. Lei, Y. Tobe, S. De Feyter, Angew. Chem., 2009, 121, 7403-7403; Angew. Chem. Int. Ed., 2009, 48, 7353-7357; g) W. Chen, H. Li, H. Huang, Y. Fu, H. L. Zhang, J. Ma, A. T. S. Wee, J. Am. Chem. Soc. 2008, 130, 12285-12289; h) P. Y. W. Dankers, M. C. Harmsen, L. A. Brouwer, M. J. A. Van Luyn, E. W. Meijer, Nat. Mater., 2005, 4, 568-574; i) J. V. Barth, G. Costantini, K. Kern, Nature, 2005, 437, 671-679; j) G. R. Desiraju, Nature, 2001, 412, 397-400.
  185. [2] Metal-organic nano objects: a) S. Lee, J. Hong, J. H. Koo, H. Lee, S. Lee, T. Choi, H. Jung, B. Koo, J. Park, H. Kim, Y.-W. Kim, T. Lee, ACS Appl. Mater. Interfaces, 2013, 5, 2432-2437; b) J.-S. Lee, S.-I. Kim, J.-C. Yoon, J.-H. Jang, ACS Nano, 2013, 7, 6047-6055; c) X. Huang, Y. Li, Y. Chen, H. Zhou, X. Duan, Y. Huang, Angew. Chem. 2013, 125, 6179-6183; Angew. Chem. Int. Ed., 2013, 52, 6063-6067; d) A. G. Marin, H. Gelderblom, A. Susarrey-Arce, A. van Houselt, L. Lefferts, J. G. E. Gardeniers, D. Lohse, J. H. Snoeijer, Proc. Nat. Acad. Sci., 2012, 109, 16455-16458; e) P. S. Weiss, Nature, 2011, 479, 187-188; f) S. P. Argent, A. Greenaway, M. d. C. Gimenez-Lopez, W. Lewis, H. Nowell, A. N. Khlobystov, A. J. Blake, N. R. Champness, M. Schroder, J. Am. Chem. Soc., 2011, 134, 55-58; g) G. J. Porreca, Nat. Biotech., 2010, 28, 43-44; h) H. N. Miras, G. J. T. Cooper, D.-L. Long, H. Bogge, A. Muller, C. Streb, L. Cronin, Science, 2010, 327, 72-74; i) Z. Junfeng, W. Li, D. Xiaochen, C. Tao, Y. Qiang, C. Chang, C. Xu, Nanotechnology, 2006, 17, 2745; j) H. Abourahma, A. W. Coleman, B. Moulton, B. Rather, P. Shahgaldian, M. J. Zaworotko, Chem. Commun. 2001, 2380-2381.
  186. [3] Intrinsic properties of molecular propellers: a) J. Ściebura, J. Gawroński, Tetrahedron: Asymmetry, 2013, 24, 683-688; b) R. Katoono, H. Kawai, M. Ohkita, K. Fujiwara, T. Suzuki, Chem. Commun., 2013; c) A. Martinez, L. Guy, J.-P. Dutasta, J. Am. Chem. Soc., 2010, 132, 16733-16734; d) R. Katoono, H. Kawai, K. Fujiwara, T. Suzuki, J. Am. Chem. Soc., 2009, 131, 16896-16904; e) P. Axe, S. D. Bull, M. G. Davidson, M. D. Jones, D. E. J. E. Robinson, W. L. Mitchell, J. E. Warren, Dalton Trans., 2009, 10169-10171; f) R. Katoono, H. Kawai, K. Fujiwara, T. Suzuki, Chem. Commun., 2008, 4906-4908; g) Y. Tabe, H. Yokoyama, Nat. Mater., 2003, 2, 806-809; h) H. S. Barcena, A. E. Holmes, S. Zahn, J. W. Canary, Org. Lett., 2003, 5, 709-711; i) D. Kaufmann, R. Boese, Angew. Chem., 1990, 102, 568-569; Angew. Chem. Int. Ed., 1990, 29, 545-546.
  187. [4] Interesting structures formed by H2bbim: a) T. Wu, L.-H. Weng, G.-X. Jin, Chem. Commun., 2012, 48, 4435-4437; b) H.-J. Mo, Y.-L. Niu, M. Zhang, Z.-P. Qiao, B.-H. Ye, Dalton Trans., 2011, 40, 8218-8225; c) Y.-R. Zhong, M.-L. Cao, H.-J. Mo, B.-H. Ye, Cryst. Growth Des., 2008, 8, 2282-2290; d) C.-K. Xia, C.-Z. Lu, D.-Q. Yuan, Q.-Z. Zhang, X.-Y. Wu, S.-C. Xiang, J.-J. Zhang, D.-M. Wu, CrystEngComm, 2006, 8, 281-291; e) L. Wen, Y. Li, D. Dang, Z. Tian, Z. Ni, Q. Meng, J. Solid State Chem., 2005, 178, 3336-3341.
  188. [5] Compounds with rare 103-srs topology: a) H. Wu, J. Yang, Z.-M. Su, S. R. Batten, J.-F. Ma, J. Am. Chem. Soc., 2011, 133, 11406-11409; b) J. Zhang, S. Chen, A. Zingiryan, X. Bu, J. Am. Chem. Soc. 2008, 130, 17246-17247.
  189. [8] Experimental studies on small water aggregates: a) K. Raghuraman, K. K. Katti, L. J. Barbour, N. Pillarsetty, C. L. Barnes, K. V. Katti, J. Am. Chem. Soc., 2003, 125, 6955-6961; b) S. Pal, N. B. Sankaran, A. Samanta, Angew. Chem., 2003, 115, 1783-1785; Angew. Chem. Int. Ed., 2003, 42, 1741-1743; c) J. N. Moorthy, R. Natarajan, P. Venugopalan, Angew. Chem., 2002, 114, 3567-3570; Angew. Chem. Int. Ed., 2002, 41, 3417-3420; d) R. Custelcean, C. Afloroaei, M. Vlassa, M. Polverejan, Angew. Chem., 2000, 112, 3224-3226; Angew. Chem. Int. Ed., 2000, 39, 3094-3096; e) L. J. Barbour, G. W. Orr, J. L. Atwood, Nature, 1998, 393, 671-673.