Title

建置及應用資料庫以發展台灣混凝土潛變預測公式

Translated Titles

Developing Taiwan's Concrete Creep Prediction Formulae Based on the Establishment and Application of Database

DOI

10.6342/NTU201703508

Authors

劉庭愷

Key Words

混凝土 ; 長期變形 ; 潛變 ; 高爐石粉 ; 飛灰 ; 資料庫 ; concrete ; prediction ; creep ; slag ; fly ash ; database

PublicationName

臺灣大學土木工程學研究所學位論文

Volume or Term/Year and Month of Publication

2017年

Academic Degree Category

碩士

Advisor

陳振川

Content Language

繁體中文

Chinese Abstract

世界針對混凝土潛變收縮已有長期的試驗與研究發展,美國西北大學及日本土木學會分別彙整國際及日本資料以建立混凝土變形資料庫;台灣大學曾於2001年統整台灣混凝土資料,距今已近二十年,本研究首先依國際格式蒐集更新台灣混凝土變形資料,建立「台灣混凝土潛變收縮資料庫」。經透過與國際資料庫分析比較與文獻探討,證實台灣混凝土配比設計時,具有常使用高水泥量、低水灰比、低粒料量∕水泥量比,且使用彈性模數較低之本土粒料的特性。本研究評估選用Model B4潛變預測公式為基礎,針對台灣混凝土獨有之特性進行本土化修正,修正內容主要為本土粒料造成混凝土彈性模數的偏低、高漿體量造成高變形、與低粒料彈性模數對乾燥潛變的影響等,最後提出適用於台灣混凝土的潛變預測公式。另外,台灣資料庫中高爐石與飛灰混凝土之潛變資料量較為不足,故本研究也指出現有公式對高爐石與飛灰混凝土之適用情況、適用範圍,及未來加強實驗研究之建議。 另外,本研究也演進國際上傳統的資料庫建置與分析方式,採用MySQL資料庫管理系統建立資料庫;並使用Python程式語言撰寫分析與後續處理之程式,結果顯示搭配MySQL與Python之資料庫處理程序,執行效率遠優於傳統之方法,原因在於MySQL與Python之效能本身就較傳統的資料庫軟體與程式語言為佳,且兩者之間可利用SQL資料庫語法的可攜帶性,達到良好的整合,Python中各種專業套件也能使許多分析的後續動作自動化。最後,本研究成果除將台灣混凝土資料庫併入世界混凝土資料庫,也奠定世界資料庫發展至雲端化與網頁化之基礎。

English Abstract

Tests and researches on the creep and shrinkage of concrete have been developed over several decades at various places around the world. Northwestern University (NU) of the USA has established a concrete deformation database which incorporates data from around the world, while the Japan Society of Civil Engineers has established their own such database with date from Japan. National Taiwan University (NTU) began collecting data from Taiwan and established a first-version database in 2001. Continuing the early work done at NTU, this study follows the framework and formula of the NU database in establishing the Taiwan Creep and Shrinkage Database, the purpose of which is in collecting and integrating up-to-date local data on shrinkage and creep. Some distinct local characteristics of concrete in Taiwan have been discovered after a comparison between international and Taiwan-only data. The local concrete produced is generally made with a high amount of cement, low water-to-cement ratio, as well as low elastic modulus of sandstone aggregate. This study takes the Model B4 creep prediction model as a base for the development of a local prediction model for Taiwan. Modifications to the model, where necessary, primarily concern the underestimation of the concrete elastic modulus due to local aggregate, large deformation due to high paste amount, and the influence of low elastic modulus of aggregate to drying creep. Due to the lack of data for slag and fly ash concrete creep in the Taiwan database, suggestions for further experiments are proposed to promote the formulation of prediction formulae. Rather than traditional methods, this study uses new tools for database establishment and analysis, and combines them in a new procedure. The new procedure involves MySQL, a Database Management System, for database establishment, and Python, a programming language, for programing of analysis models and post-processing tasks. Results show that this new database processing procedure is much more efficient than traditional procedures. This is, first, due to the greater efficiency of MySQL and Python over traditional Database Management Systems and programming languages. Second, SQL (the database programming language behind MySQL) is highly portable, which facilitates integration between MySQL and Python. Third, professional packages in Python allow one to proceed with many steps of analysis and post-processing automatically. It is foreseen that this study will help to incorporate the Taiwan database into the world concrete deformation database and will help to establish an effective platform based on MySQL and Python. This, in turn, is expected to promote the development of a new era of cloud calculation and user-friendly web systems for deformation prediction.

Topic Category 工學院 > 土木工程學研究所
工程學 > 土木與建築工程
Reference
  1. [4] 陸景文、陳振川、張國鎮、詹穎雯,2001,「台灣地區溫度對混凝土橋樑影響之監測與分析」,中國土木水利工程學刊,第13卷,第3期,pp.593-604。
    連結:
  2. [5] Hubler, M. H., Wendner, R., and Bažant, Z.P., 2015, “Comprehensive Database for Concrete Creep and Shrinkage: Analysis and Recommendations for Testing and Recording,” ACI Materials Journal, V. 112, NO. 112-M52, July, pp.547-558.
    連結:
  3. [6] K. Sakata, T. Ayano, K. Imamoto, Y. Sato, 2008, “Database of Creep and Shrinkage Based on Japanese Researches,” CONCREEP 8 Conference, Ise-Shima, Japan.
    連結:
  4. [7] K. Sakata, and T. Shimomura, 2004, “Recent Progress in Research on and Code Evaluation of Concrete Creep and Shrinkage in Japan,” Journal of Advanced Concrete Technology, Vol. 2, NO. 2, pp. 130-144.
    連結:
  5. [8] Mehta, P., and P. J.M. Monteiro, 1986, “Concrete Structure, Properties and Materials,” Prentice- Hall inc., Englewood-Cliffs, N.J., 1986.
    連結:
  6. [9] 陳振川、詹穎雯,1989,「飛灰與無飛灰混凝土之強度與變形」,中國土木水利工程學刊,第一卷,第一期,pp. 43-58。
    連結:
  7. [11] 行政院公共工程委員會,2001,「公共工程高爐石混凝土使用手冊」。
    連結:
  8. [13] 陳振川、高健章、詹穎雯、湯豐銘,1987,「不同環境溫、濕度對高爐水泥與卜特蘭水泥混凝土強度影響與變形之研究」,研究報告,財團法人台灣營建研究中心。
    連結:
  9. [14] Bažant, Z.P., and Chern, J. C., 1985, "Concrete Creep at Variable Humidity: Constitutive Law and Mechanism", Materials and Structures, Vol. 18, No. 103, pp. 1-20.
    連結:
  10. [21] Ross, A. D., 1983, “The Creep of Blast Furnace Slag Cement Concrete,” ACI Journal, Vol. 8, pp. 43-52.
    連結:
  11. [23] Collins, F. G., and Sanjayan, J. G., “Effect of Pore Size Distribution on Drying Shrinking of Alkali-Activated Slalg Concrete,” Cement and Concrete Research 30, pp. 1401-1406.
    連結:
  12. [24] Shariq, M., Prasad, J., and Abbas, H., 2016, “Creep and Drying Shrinkage of Concrete Containing GGBFS,” Cement and Concrete Composites, 68, pp. 35-45.
    連結:
  13. [25] ACI Committee 232, 2002, “Use of Fly Ash in Concrete(ACI 232.2R-96),” American Concrete Institute.
    連結:
  14. [28] Yuan, R. L., and Cook, J. E., 1983, “Study of Class C Fly Ash Concrete,” Fly Ash, Silica Fume, Slag and Other Mineral By-Products in Concrete, SP-79, American Concrete Institute, pp. 307-319.
    連結:
  15. [29] Hansen, T.C., and K.E.C., Nielsen, 1965, “Influence of aggregate properties on concrete shrinkage,” ACI, pp.783.
    連結:
  16. [33] ACI Committee 209, 1992, “Prediction of Creep, Shrinkage, and Temperature Effects in Concrete Structures (ACI 209R-92),” American Concrete Institute, Farmington Hills, MI, 47 pp.
    連結:
  17. [35] Gardner, N. J., and Lockman, M. J., 2004, “Is Superposition of Creep Strains Valid for Concretes Subjected to Drying Creep?” ACI Materials Journal, V. 101, NO. 5, Sept.-Oct., pp.409-415.
    連結:
  18. [36] Gardner, N. J., and Lockman, M. J., 2001, “Design Provisions for Drying Shrinkage and Creep of Normal Strength Concrete,” ACI Materials Journal, V. 98, NO. 2, Mar.-Apr., pp. 159-167.
    連結:
  19. [38] CEB, 1999, “Structural Concrete—Textbook on Behaviour, Design and Performance. Updated Knowledge of the CEB/FIP Model Code 1990,” fib Bulletin 2, V. 2, Federation Internationale du Beton, Lausanne, Switzerland, pp. 37-52.
    連結:
  20. [39] Bažant, Z.P., and Baweja, S., 1995, “Creep and Shrinkage Prediction Model for Analysis and Design of Concrete Structures: Model B3,” Materials and Structures, Vol. 28, pp. 357-365, 415-430, 488-495.
    連結:
  21. [42] Bažant, Z.P., L.Panula, 1978, “Practical prediction of time-dependent deformations of concrete”, Materials and Structures, Vol.11, Issue 5, pp.317-328.
    連結:
  22. [46] ACI Committee 435, 2000, “Control of Deflection in Concrete Structures (ACI435R-95),” American Concrete Insttitute.
    連結:
  23. [52] 陳振川、高健章、陳清泉,1987,「縱貫線下大甲溪橋U型梁載重試驗及相關試驗研究」,研究報告,財團法人台灣營建研究中心。
    連結:
  24. [53] 林宜楷,2010,「高強度高細度爐石粉混凝土潛變與乾縮行為之研究」,碩士論文(指導教授:詹穎雯),國立台灣大學土木工程學研究所,台北。
    連結:
  25. [54] 吳鎮吉,2012,「高摻量飛灰混凝土應用於連續壁及基礎版之工程性質探討」,碩士論文(指導教授:詹穎雯),國立台灣大學土木工程學研究所,台北。
    連結:
  26. [57] Chern, J.C., Young, C.H., 1990, “Study on the Factors Influencing the Drying Shrinkage of Steel Fiber Reinforced Concrete,” ACI Materials Journal, Vol. 87, No. 2, 123-129.
    連結:
  27. [58] Chern, J.C.,and Young, C.H., 1991, “Practical Prediction Model for Shrinkage of Steel Fibre Reinforced Concrete,” Materials and Structures, Vol. 24, pp.191-201.
    連結:
  28. [59] Chern, J.C. and Young, C.H., (1992), "Pickett Effect and Creep in Flexure of Steel-Fiber Reinforced Concrete," J. of the Chinese Institute of Engineers, Vol. l5, No. 6, pp. 695-702.
    連結:
  29. [60] 吳賴雲、張阿本、李振昌,1995,「中山高汐五段高架拓寬工程圓山-台北段試驗混凝土潛變與乾縮性質研究」,研究報告,財團法人台灣營建研究中心。
    連結:
  30. [61] 張燕京、陳振川、陳清泉、張國鎮、詹穎雯,1996,「預力混凝土箱型梁上部結構自動工法個案研究-支撐先進工法(南二高台南環線C372標工程)」,研究報告,財團法人台灣營建研究中心。
    連結:
  31. [62] 詹穎雯、周浩生,1998,「高速公路王田交流道工程混凝土材料潛變與乾縮性質研究」,研究報告,財團法人台灣營建研究中心。
    連結:
  32. [65] 陳宗賢,2005,「自充填混凝土預力大梁長期載重行為之研究」,碩士論文(指導教授:詹穎雯),國立台灣大學土木工程學研究所,台北。
    連結:
  33. [66] 孫昌政,2012,「高流動化混凝土應用於橋梁工程之配比設計」,碩士論文(指導教授:詹穎雯),國立台灣大學土木工程學研究所,台北。
    連結:
  34. [74] 財團法人台灣營建研究院(TCRI),2017,Project TSC105002,鋼筋混凝土材料耐久性實驗報告。
    連結:
  35. [75] 財團法人台灣營建研究院(TCRI),2015,Project TSC103011,混凝土長期材料腐蝕實驗報告。
    連結:
  36. [77] 財團法人台灣營建研究院(TCRI),2013,Project TRC100008,基礎版HVFA混凝土配比實驗報告。
    連結:
  37. [82] Bažant, Z.P., ASCE, F., and Chern, J. C., 1987, “Stress-Induced Thermal and Shrinkage Strains in Concrete,” Journal of Engineering Mechanics, Vol. 113, pp.1493-1511.
    連結:
  38. [84] Wendner, R., Hubler, M. H., and Bažant, Z.P., 2015, “Statistical Justification of Model B4 for Multi-Decade Concrete Creep Using Laboratory and Bridge Databases and Comparisons to Other Models,” Materials and Structures, Vol. 48, pp. 815-833.
    連結:
  39. [85] 廖文正、林致淳、詹穎雯,2016,「台灣混凝土彈性模數建議公式研究」,結構工程,Vol. 31, NO.3, pp.5-31。
    連結:
  40. [86] Maruyama, I., Sasano, H., and Lin, M., 2016, “Impact of aggregate properties on the development of shrinkage-induced cracking in concrete under restraint conditions”, Cement and Concrete Research 85, pp.82-101.
    連結:
  41. [87] Barnett, S. J., Soutsos, M. N., Bungey, J. H., and Millard, S. G., 2007, “Fast –Track Construction with Slag Cement Concrete: Adiabatic Strength Development and Strength Prediction,” ACI Materials Journal, Vol. 104, pp.388-396.
    連結:
  42. [1] Chern, J. C., and Liu, T.C., 2009, “Life-Cycle Management of Sustainable Public Infrastructure,” Paper presented at the International Symposium on Infrastructure and Environment, sponsored by the Society for Social Management Systems, Kochi, Japan. (2010 SSMS Best Paper Award).
  43. [2] 陳振川,2013,「積極構架健全工程環境–持續推動優質公共建設」,混凝土科技,台灣混凝土學會,第七卷,第四期,pp. 3-25。
  44. [3] 陸景文,2001,「台灣地區混凝土橋梁溫度、彈性應變、潛變及乾縮特性之整合研究」,博士論文(指導教授:陳振川、詹穎雯),國立台灣大學土木工程學研究所,台北。
  45. [10] 詹穎雯,1987,「環境溫、濕度對含高爐石、飛灰與普通卜特蘭水泥混凝土強度之影響與變形之研究」,碩士論文(指導教授:陳振川),國立台灣大學土木工程學研究所,台北。
  46. [12] 行政院公共工程委員會,1999,「公共工程飛灰混凝土使用手冊」。
  47. [15] Neville, A. M., Dilger, W. H., and Brooks, J. J., 1983, “Creep of Plain and Structural Concrete”, Longman Inc., New York.
  48. [16] Loman, W. R., 1940, “The Theory of Concrete Creep”, Proc, ASTM, Vol. 40, pp. 1082-1102.
  49. [17] Wagner, O., 1958, “Das Kriechen Unbewehrten Betons, Deutscher Ausschuss fur Stahlbeton, No. 131, Berlin, pp.74.
  50. [18] Brooks, J. J., Wainwright, P. J., and Boukendakji, M., 1992, “Influence of Salg Type and Replacement Level on Strength, Elasticity, Shrinkage, and Creep of Concrete,” ACI SP-132, pp.1325-1341.
  51. [19] 陳振川、詹穎雯,1986,「添加飛灰與高爐石粉混凝土之體積穩定探討」,高爐石與飛灰資源再混凝土工程上應用研討會,pp. 215-243。
  52. [20] 陳振川,1987,「混凝土力學行為—強度」,混凝土施工技術研討會論文集,pp. 81-110。
  53. [22] Tazawa, E., Yonekura, A., and Tanaka, S., 1989, “Drying Shrinkage and Creep of Concrete Containing Granulated Blast Furnace Slag,” ACI Special Publication, Vol. 114, pp. 1325-1344.
  54. [26] Naganathan, S., and Linda, T., 2013, “Effect of Fly Ash Fineness on the Performance of Cement Mortar,” Jordan Journal of Civil Engineering, Vol. 7, NO. 3, pp. 326-331.
  55. [27] Lane, R. O., and Best, J. F., 1982, “Properties and Use of Fly Ash in Portland Cement Concrete,” Concrete International: Design & Construction, V. 4, No. 7, July, pp. 81-92.
  56. [30] Chern, J.C., Marchertas, A.H., and Bažant, Z.P., 1985, "Concrete Creep at Transient Temperature: Constitutive Law and Mechanism", Proc. 8th Intern. Conf. on Struc. Mech. in Reactor Technology, Bressels, Belgium.
  57. [31] Branson, D. E., and Christiason, M. L., 1971, “Time Depedent Concrete Properties Related to Design—Strength and Elastic Properties, Creep and Shrinkage,” Creep, Shrinkage and Temperature Effects, SP-27, American Concrete Institute, Farmington Hills, MI, pp. 257-277.
  58. [32] ACI Committee 209, 1982, “Prediction of Creep, Shrinkage and Temperature Effects in Concrete Structures,” Designing for Creep and Shrinkage in Concrete Structures, A Tribute to Adrian Pauw, SP-76, American Concrete Institute, Farmington Hills, MI, pp. 193-300.
  59. [34] AASHTO, 2014, “AASHTO LRFD Bridge Design Specifications. 7 th ed,” American Association of State Highway and Transportation Officials (AASHTO), Washington DC.
  60. [37] CEB, 1991, “Evaluation of the Time Dependent Properties of Concrete,” Bulletin d’Information NO. 199, Comite European du Beton/Federation Internationale de la Precontrainte, Lausanne, Switzerland, 201 pp.
  61. [40] Bažant, Z.P., Hubler, M.H., and Wendner, R., 2015, “Model B4 for Creep, Drying Shrinkage and Autogenous Shrinkage of Normal and High-strength Concretes with Multi-decade Applicability,” RILEM Recommendation TC-242-MDC.
  62. [41] ACI Committee 209, 2008, “Guide for Modeling and Calculating Shrinkage and Creep in Hardened Concrete (ACI 209.2R-08),” American Concrete Insttitute.
  63. [43] Muller, H. S., and Hilsdorf, H. K., 1990, “General Task Group 9,” CEB Comit’e Euro-International du Beton, Paris, France, pp. 201.
  64. [44] 中華民國內政部營建署,2017,混凝土結構設計規範,台內營字第1060805829號。
  65. [45] 中華民國交通部,2015,公路橋梁設計規範,交技(104)字第1045004678號。
  66. [47] 高健章、林正直,1970,「混凝土受均佈壓力及均變分佈壓力之初期潛變」,材料科學,第二卷,第三期。
  67. [48] 孫志誠,1975,「養護環境對混凝土潛變之影響」,碩士論文(指導教授:高健章),國立台灣大學土木工程學研究所,台北。
  68. [49] 高健章、張阿本、孫志誠,1975,「各種養護環境之混凝土潛變及其極限值」,材料科學,第二卷,第三期。
  69. [50] 黃裔炎,1985,「大壩混凝土之潛變試驗研究」,碩士論文(指導教授:高健章),國立台灣大學土木工程學研究所,台北。
  70. [51] 張行健,1987,「混凝土大壩熱粘彈性有限元素分析與潛變試驗」,碩士論文(指導教授:陳振川),國立台灣大學土木工程學研究所,台北。
  71. [55] 侯錫璋,1988,「混凝土潛變預測模式之發展與爐石骨材混凝土之長期行為研究」,碩士論文(指導教授:陳振川),國立台灣大學土木工程學研究所,台北。
  72. [56] 楊錦懷,1989,「纖維加強水泥複合材料之乾縮、黏彈與破裂行為研究」,博士論文(指導教授:陳振川、陳清泉),國立台灣大學土木工程學研究所,台北。
  73. [63] 駱國富,1996,「高性能混凝土預力粱預力損失與長期變位之研究」,碩士論文(指導教授:陳振川),國立台灣大學土木工程學研究所,台北。
  74. [64] 謝明宏,1999,「自充填混凝土之本土化研究」,碩士論文(指導教授:詹穎雯),國立台灣大學土木工程學研究所,台北。
  75. [67] 吳泳佶,1987,「混凝土之潛變律暨其受濕度影響之分析與試驗」,碩士論文(指導教授:陳振川),國立台灣大學土木工程學研究所,台北。
  76. [68] 高健章、陳振川、黃裔炎,1987,「混凝土乾縮特性試驗及預測」,土木水利季刊,第十三卷,第四期。
  77. [69] 陳振川、張行健,1988,「乾燥、飽合濕度與高溫等不同環境下之混凝土壓力潛變」,土木水利季刊,第十五卷,第三期。
  78. [70] 魏坤雄,1990,「飛灰高強度混凝土、高溫養護及其基本力學性質之研究」,碩士論文(指導教授:趙文成),國立台灣大學土木工程學研究所,台北。
  79. [71] 張國鎮、陳振川、田堯彰、莫詒隆,1994,「碧潭橋動力及靜力特性之監測與分析(北二高碧潭橋工程)」,研究報告,交通部國道新建工程局。
  80. [72] 高健章、陳達宜,1995,「西藏大橋混凝土相關試驗報告」,研究報告,國立台灣大學土木工程學系。
  81. [73] 丘惠生,1995,「長跨懸臂節塊式預力混凝土橋梁長期變位控制研究」,博士論文(指導教授:陳振川),國立台灣大學土木工程學研究所,台北。
  82. [76] 中國水利土木工程學會,2011,Project 00937,跨海橋梁混凝土材料特性研究報告。
  83. [78] 林進隆,2016,「高性能混凝土之潛變與乾縮行為之探討」,碩士論文(指導教授:黃兆龍),國立台灣科技大學營建工程研究所,台北。
  84. [79] 黃兆龍,蘇南,1979,「台灣主要河川粗骨材資源、岩性及巨觀工程性質之探討」,土木水利,第十六卷,第二期,第61-76頁。
  85. [80] 黃兆龍,蘇南,1980,「台灣北中部主要河川粗骨材巨觀工程性質之研究」,土木水利,第17卷,第1期,第43-59頁。
  86. [81] 經濟部中央地質調查所,1972,「台灣地區陸上砂石資源調查與研究報告」。
  87. [83] Chern, J.C., 1984, “Creep Law of Concrete, Its Uncertainty and Effects of Drying and Cracking,” PhD Dissertation (advised by Bažant, Z. P.), Northwestern University.
Times Cited
  1. 王丞(2017)。建置及應用資料庫以發展台灣自充填混凝土收縮預測公式。臺灣大學土木工程學研究所學位論文。2017。1-153。