Title

球形粒子之塗佈對抗反射膜抗反射效率的影響

Translated Titles

Effect of Spherical Particle Coating on the Efficiency of Anti-reflective Film

DOI

10.6342/NTU.2009.02702

Authors

謝宗憲

Key Words

抗反射塗佈 ; 球形粒子 ; 多層膜 ; 反射率 ; 嚴格耦合波理論 ; 等效折射率理論 ; anti-reflective coating ; spherical particle ; multiple layers ; reflectivity ; RCWA ; EMT

PublicationName

臺灣大學高分子科學與工程學研究所學位論文

Volume or Term/Year and Month of Publication

2009年

Academic Degree Category

碩士

Advisor

徐治平

Content Language

英文

Chinese Abstract

本文主要討論的是單層球形粒子塗佈在基板上所呈現的抗反射效應可以利用已知的理論來分析結果。被鍍在基板上的球形粒子可以視為由很多層具有不同折射率的膜層所建構而成,且球形粒子具有幾何對稱以漸變式的折射率改變方式存在整個架構中。反射率的大小可以透過抗反射膜理論中的膜矩陣理論計算得到。數值模擬中的球形粒子材料可以是由二氧化矽以及二氧化鈦以不同比例混合而得,或是其他合適的高分子混合而得,常見的例子有聚苯乙烯。實際上反射率以及穿透率是會隨著不同的粒子折射率以及基板折射率而有所不同,其中粒子之間的距離以及相對大小的改變也會是影響反射率大小的極大變因。結果顯示出當粒子半徑為40奈米,排列的方式以四方緊密之堆積排列而成而且具有折射率為1.35時,反射率在波長為389奈米存在最小值可到0.0068%。使用嚴格耦合波理論(rigorous coupled wave analysis,RCWA)以及等效折射率理論(effective medium theory)計算粒子半徑是40奈米時的狀況卻只有在往長波長的時候才有相近的趨勢。造成此現象的原因可能是因為粒子排列的週期與入射波長的差距還不夠大,以及使用RCWA求反射率時所給的和諧數(harmonics)太少導致解微分方程式出現了部份誤差。

English Abstract

The anti-reflective behavior of a layer of mono-dispersed spherical particles coated onto a substrate is analyzed theoretically. The coated particles are divided into multiple layers each plays the role of a film, and the overall reflectivity is estimated by the anti-reflective theorem for a single film. Numerical simulations are conducted in which the particle material is SiO2 mixed with TiO2 or appropriate polymers such as polystyrene. We show that both the reflectivity and the transmittivity of the system vary with the refractive index of the particle and that of substrate. For particles of radius 40 nm and refractive index 1.35, the reflectivity has the minimum value of 0.0068 % at 389 nm. The results of reflectance by RCWA and EMT in the case of particles of radius 40 nm, refractive index 1.46 have similar tendency on visible wavelength. The reasons of inaccuracy are possible for that when the period of spherical particles is not enough smaller than incident wavelength, and we work out differential equations, harmonics is insufficient.

Topic Category 工學院 > 高分子科學與工程學研究所
工程學 > 化學工業
Reference
  1. 1. Daniel H. Raguin and G. Michael Morris, “Antireflection structured surfaces for the infrared spectral region,” APPLIED OPTICS, Vol. 32, pp. 1154- 1167, 1993
    連結:
  2. 2. Hideshi Hattori, “Anti-Reflection Surface with Particle Coating Deposited by Electrostatic Attraction,” Adv. Mater., Vol. 13, pp. 51-54, 2001
    連結:
  3. 3. David L. Brundrett, Elias N. Glytsis, and Thomas K. Gaylord, “Homogeneous layer models for high-spatial-frequency dielectric surface-relief gratings: conical diffraction and antireflection designs,” APPLIED OPTICS Vol. 33, pp. 2695- 2706, 1994
    連結:
  4. 4. Eric B. Grann, M. G. Moharam, and Drew A. Pommet, “Artificial uniaxial and biaxial dielectrics with use of two-dimensional subwavelength binary gratings,” J. Opt. Soc. Am. A Vol. 11, pp. 2695- 2703, 1994
    連結:
  5. 5. Lord Rayleigh, Proceeding Royal Society A 41, 275(1887)
    連結:
  6. 6. V. Janicki, D. Gäbler, S. Wilbrandt, R. Leitel, O. Stenzel, N. Kaiser, M. Lappschies, B. Görtz, D. Ristau, C. Rickers, and M. Vergöhl, “Deposition and spectral performance of an inhomogeneous broadband wide-angular antireflective coating,” APPLIED OPTICS, Vol. 45, pp. 7851- 7857, 2006
    連結:
  7. 8. 張文發, 半導體雷射之抗反射鍍膜技術研究, 國立台灣大學電子工程學研究所碩士論文, 2005.
    連結:
  8. 10. Thomas K. Gaylord, W. E. Baird, and M. G. Moharam, “Zero-reflectivity high spatial-frequency rectangular-groove dielectric surface-relief gratings,” APPLIED OPTICS 25, pp. 4371- 4376, 1986
    連結:
  9. 11. M. E. Motamedi, W. H. Southwell, and W. J. Gunning, “Antireflection surfaces in silicon using binary optics technology,” APPLIED OPTICS 31, pp. 4371- 4376, 1992
    連結:
  10. 12. Lord Rayleigh, “On the influence of obstacles arranged in rectangular order upon the properties of a medium, ” Philos. Mag. 34,481-502, 1892
    連結:
  11. 13. J. C. Maxwell Garnett, “On colours in metal glasses, in metallic films, and in metallic solutions, ” Philos. Trans. R. Soc. London 205,237-287, 1906
    連結:
  12. 15. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. opt. Soc. Am., vol. 71, 811-818, 1981
    連結:
  13. 16. M. G. Moharam, Eric B. Grann, Drew A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. opt. Soc. Am., vol. 12, 1068-1076, 1995
    連結:
  14. 17. T. K. Gaylord, “Analysis and applications of optical diffraction by gratings
    連結:
  15. 19. 林嘉龍, 奈米直寫儀之校準與系統整合, 國立台灣大學應用力學研究所碩士論文, 2004.
    連結:
  16. 20. Yang Zhao*, “Self-assembled nanostructures for antireflection optical coatings,” Proceedings of SPIE Vol. 5642, pp.355-363, 2005
    連結:
  17. 7. Hernµn Míguez, Francisco Meseguer, Cefe López,* lvaro Blanco, JosØ S. Moya, Joaquín Requena, Amparo Mifsud, and Vicente FornØs, “Control of the Photonic Crystal Properties of fcc-Packed Submicrometer SiO2 Spheres by Sintering,” Adv. Mater. Vol. 10, pp. 480-483, 1998
  18. 9. 李正中, 薄膜光學與鍍膜技術, 第二版, 藝軒圖書出版社,2001.
  19. 14. M. Born and E. Wolf, Principles of Optics (Pergamon, London, 1980), pp. 705-708.
  20. ,” Proceedings of the IEEE 73, pp.894-937, 1985
  21. 18. See, e.g., C. 1. Liu and J. W. S. Liu, Linear Systems Analysis. New York: McGraw-Hill, 1975.