Title

異向性彈塑組成律於混合控制

DOI

10.6342/NTU.2005.02916

Authors

陳信穎

Key Words

異向性彈塑組成律 ; 混合控制 ; 凱利變換 ; 收縮比 ; Elastoplasticity ; anisotropy ; mixed control ; Cayley transform ; contraction ratio

PublicationName

臺灣大學土木工程學研究所學位論文

Volume or Term/Year and Month of Publication

2005年

Academic Degree Category

碩士

Advisor

洪宏基

Content Language

繁體中文

Chinese Abstract

本研究結合異向性材料的彈塑行為與混合控制的概念,發展可任意選定控制變數的異向性彈塑理論架構,以期模式之輸入與輸出能符合實際實驗狀況。 首先針對異向性彈塑組成律於軸扭應變控制的理論推導,在軸扭應變控制下考慮收縮比(contraction ratio)的效應,利用極座標的觀念將軸扭二維的問題簡化成一維的問題,進而求得軸扭應力反應。 接著針對異向性混合硬化彈塑組成律來進行混合控制的理論推導,在推導過程中經由適時的變數變換與矩陣對角化,我們可將表示於 6 維主動應力空間的高度非線性塑性微分方程式轉換成表示於 12 維增廣主動應力空間的擬線性Lie系統,利用凱利變換可隨著時間增量一步一步求得Lie系統之輸出,而不需於每步離散時間進行迭代。

Topic Category 工學院 > 土木工程學研究所
工程學 > 土木與建築工程
Reference
  1. [2] D. C. Drucker and W. Prager, “Soil mechanics and plastic analysis or limit design,” Quarterly of applied mathematics, Vol.10, pp.157-165, (1952).
    連結:
  2. [3] M. Francois, “A plasticity model with yield surface distortion for non proportional loading,” International Journal of Plasticity, Vol.17, pp.703-717, (2001).
    連結:
  3. [4] R. Hill, “A theory of the yielding and plastic flow of anisotropic metals,” Proceedings of Royal Society, London, A, Vol.193, pp.281-297, (1948).
    連結:
  4. [5] H. K. Hong and J. K. Liou, “Integral-equation representations of flow elastoplasticity derived from rate-equation models,” Acta Mechanica, Vol.96, pp.181-202, (1993).
    連結:
  5. [6] T. Hassan and S. Kyriakides, “Ratchetting of cyclically hardening and softening materials: I. uniaxial behavior, ” International Journal of Plasticity, Vol. 10, pp.149-184, (1994).
    連結:
  6. [7] H. K. Hong and C. S. Liu, “Prandtl-Reuss elastoplasticity: on-off switch and superposition formulae,” International Journal of Solids and Structures, Vol.34, pp.4281-4304, (1997).
    連結:
  7. [8] H. K. Hong and C. S. Liu, “On behavior of perfect elastoplasticity under rectilinear paths,” International Journal of Solids and Structures, Vol.35, pp.3539-3571, (1998).
    連結:
  8. [9] H. K. Hong and C. S. Liu, “Lorentz group (5, 1) for perfect elastoplasticity with large deformation and a consistency numerical scheme,” International Journal of Non-Linear Mechanics, Vol.34, pp.1113-1130, (1999).
    連結:
  9. [11] H. K. Hong and C. S. Liu, “Internal symmetry in the constitutive model of perfect elastoplasticity,” International Journal of Non-Linear Mechanics, Vol.35, pp.447-466, (2000).
    連結:
  10. [12] H. K. Hong and C. S. Liu, “Lorentz group on Minkowski spacetime for construction of the two basic principles of plasticty,” International Journal of Non-Linear Mechanics, Vol.36, pp.679-686, (2001).
    連結:
  11. [13] Y. Jiang, and H. Sehitoglu, “Cyclic ratchetting of 1070 steel under multiaxial stress states,” International Journal of Plasticity, Vol. 10, pp.579-608, (1994).
    連結:
  12. [14] Y. Jiang and P. Kurath, “Characteristics of the Armstrong-Frederick type plasticity models,” International Journal of Plasticity, Vol. 12, No. 3, pp.387-415, (1996).
    連結:
  13. [16] M. Klisinski, Z. Mroz and K. Runesson, “Structure of constitutive equations in plasticity for different choices of state and control variables,” International Journal of Plasticity, Vol.8, pp.221-243, (1992).
    連結:
  14. [17] M. Kobayashi and N. Ohno, “Implementation of cyclic plasticity models based on a general form of kinematic hardening,” International journal for numerical methods in engineering, Vol. 53, pp.2217-2238, (2002).
    連結:
  15. [18] C. Liu, Y. Huang and M. G. Stout, “On the asymmetric yield surface of plastically orthotropic materials: a phenomenological study,” Acta materialia, Vol.45, pp.2397-2406, (1997).
    連結:
  16. [19] C. S. Liu and H. K. Hong, “The contraction ratios of perfect elastoplasticity under biaxial controls,” European Journal of Mechanics A/Solids, Vol.19, pp.827-848, (2000).
    連結:
  17. [20] C. S. Liu and C. W. Chang, “Non-canonical Minkowski and pseudo-Riemann frames of plasticity models with anisotropic quadratic yield criteria,” International Journal of Solids and Structures, Vol.42, pp.2851-2882, (2005).
    連結:
  18. [21] V. A. Lubarda, D. J. Benson, “On the numerical algorithm for isotropic-kinematic hardening with the Armstrong-Frederick evolution of the back stress,” Computer methods in applied mechanics and engineering, Vol.191, pp.3583-3596, (2002).
    連結:
  19. [22] Z. Mroz and P. Rodzik, “On the control of deformation process by plastic strain,” International Journal of Plasticity, Vol.11, No.7, pp.827-842, (1995).
    連結:
  20. [23] K. M. Reinicke and T. D. Ralston, “Plastic limit analysis with an anisotropic, parabolic yield function,” International journal of rock mechanics and mining sciences, Vol.14, pp.147-154, (1977).
    連結:
  21. [1] J. L. Chaboche, “Modeling and ratchetting : evaluation of various approaches,” European Journal of Mechanics A/Solids, Vol.13, pp.501-518, (1994).
  22. [10] H. K. Hong and C. S. Liu, “Internal symmetry in bilinear elastoplasticity,” International Journal of Non-Linear Mechanics, Vol.34, pp.279-288, (1999).
  23. [15] M. Jirasek and Z. P. Bazant, Inelastic Analysis of Structures, Wiley, New York, (2002).
  24. [24] I. Titeux, Y. M. Li, K. Debray and Y. Q. Guo, “An efficient algorithm for plastic integration of material satisfying Hill’s anisotropic yield criteria,” Comptes rendus mecanique, Vol.332, pp.901-906, (2004).
  25. [25] H. C. Wu, H. K. Hong and Y. P. Shiao, “Anisotropic plasticity with application to sheet metal,” International Journal of Mechanical Sciences, Vol.41, pp.703-724, (1999).
  26. [26] F. Yoshida, “Ratchetting behavior of 304 stainless at 650℃ under multiaxially strain-controlled and uniaxially/multiaxially stress-controlled conditions, ” European Journal of Mechanics A/Solids, Vol.14, pp.97-117, (1995).
  27. [27] 林聰悟,林佳慧,數值方法與程式,圖文技術,台北,(1997)。
  28. [28] 劉錦坤,熱黏彈塑性材料積分組成律研究,國立臺灣大學應用力學研究所,台北,(1991)。
  29. [29] 蕭雅柏,構造用金屬材料多向循環負載與異向性研究,國立台灣大學土木工程研究所,台北,(2000)。