Title

人行道地面機械綠能發電系統開發與其效率量測

Translated Titles

Development and Working Efficiency Measurements for the Electric Power Generation System of Ground Mechanical Green Energy Harvesting on Sidewalk

Authors

楊承諺

Key Words

人行道地面機械綠能發電系統 ; 電磁感應人行道地面發電地磚 ; 自動化效率量測系統 ; 脈衝式電磁感應發電機 ; 一般式電磁感應發電機 ; The electric power generation system of ground mechanical green energy harvesting on sidewalk ; the sidewalk electric power generation brick ; the automatic efficiency measurement system ; the plused electromagnetic induction generator ; the general electromagne

PublicationName

臺北科技大學製造科技研究所學位論文

Volume or Term/Year and Month of Publication

2014年

Academic Degree Category

碩士

Advisor

丁振卿

Content Language

繁體中文

Chinese Abstract

本論文主要在研究開發人行道地面機械綠能發電系統與進行其效率量測,此人行道地面機械綠能發電系統包括電磁感應人行道地面發電地磚與自動化效率量測系統兩部分。在發電地磚方面,以CCT實驗室所開發之脈衝式電磁感應發電機與一般式電磁感應發電機為基礎,分別設計搭配適合之傳動機構,其中,脈衝式電磁感應發電機 由外壁繞有線圈的線圈管及其內部往復移動的強力磁鐵,再加上線圈管兩端可交互斥推管內強力磁鐵的磁鐵盤組成,當管內強力磁鐵受兩端磁鐵盤斥推並往復穿過線圈時,即可感應產生電動勢;而一般式電磁感應發電機則是使用傳統地旋轉磁切的方式發電。兩種發電機都是法拉第電磁感應定律(Faraday's Law of Induction)的應用,而且兩者所搭配的傳動機構都是利用活塞曲柄傳動搭配機械變速組合,衝程以5、7與10 mm進行效率探討。在效率量測方面,以氣壓缸衝擊模擬裝置模擬行人踩踏發電地磚之正向力,並結合CCT實驗室自行開發的自動化效率量測系統。研究過程探討發電地磚在不同衝程距離與不同衝擊力道下的發電效率,此外,脈衝式與一般式電磁感應發電機也透過自動化效率量測系統成功地量測其發電效率,最後再由所測得的電磁感應人行道地面發電地磚之發電效率與發電機之發電效率換算得到電磁感應人行道地面發電地磚之機構傳動效率。本論文成功開發人行道地面機械綠能發電系統並測得其發電效率,結果顯示,脈衝式電磁感應人行道地面發電地磚在衝程5 mm時以50 kg衝擊力道撞擊,發電效率為1.35%;一般式電磁感應人行道地面發電地磚在衝程5 mm 時以50 kg衝擊力道撞擊,發電效率為5.58%,而在衝程10 mm以50 kg衝擊力道撞擊時,發電效率達到14.90%。

English Abstract

This article aims to develop the electric power generation system of ground mechanical green energy harvesting on sidewalk and perform its working efficiency measurements. The developed system mainly consists of the sidewalk lectric power generation brick and the automatic efficiency measurement system. The sidewalk electric power generation brick used the pulsed electromagnetic induction generator and the general electromagnetic induction generator with suitable transmission mechanism respectively. The pulsed electromagnetic induction generator is built in an electric coil tube integrated with an inside movable induction magnet. Moreover, two push magnets are built on the two endpoints of the electric coil tube respectively. The push magnets alternately move over the endpoints of the electric coil tube and push the inside induction magnet to run through the electric coil to and fro. This action yields induced electromotive force in the electric coil and its output power is independent on moving speed of the push magnets. The general electromagnetic induction generator is the traditional generator. The working principle and the transmission mechanism of the mentioned two generators are both in terms of Faraday’s law of induction and with piston transmission of strokes 5, 7, and 10 mm respectively. For working efficiency measurements, this work used the air pressure driven piston to serve as the input energy and integrated with the CCT Lab. developed automatic working efficiency measurement system. Moreover, the transmission efficiency is finally decided by the difference between working efficiencies of the brick and the generator. The results show that the working efficiency is 1.35% for the pulsed electromagnetic induction generator built brick using impact force of 50 kg with stroke of 5 mm, 5.58 and 14.9% for the general electromagnetic generator built brick using impact force of 50 kg with strokes of 5 and 10 mm respectively.

Topic Category 機電學院 > 製造科技研究所
工程學 > 機械工程
Reference
  1. [2] C. C. Ting and W. S. Chao, ”The reversal constituent structure of photo-electrode in dye-sensitized solar cells,”Journal of Alloys and Compounds, vol. 509, 2011, pp. 8670-8675.
    連結:
  2. [3] C. C. Ting and L. Y. Yeh, ”Developing the full-field wind electric generator,”Electrical Power and Energy Systems, vol. 55, 2014, pp. 420-428.
    連結:
  3. [5] 蔡達毅、楊承諺、潘奕華、顏文奕、丁振卿,「地面機械綠能回收技術」,科儀新知,第三十五卷,第三期,2013,第73-81頁。
    連結:
  4. [8] International Energy Agency, ”Key World Energy Statistics,”2013, p. 50.
    連結:
  5. [11] 林文彬,市市電併聯型單相感應發電機之特性研究,碩士論文,國立成功大學電機工程學系,台南市,2005。
    連結:
  6. [12] 魏貞元,永磁同步發電機功率控制器之研製與模擬,碩士論文,國立成功大學電機工程學系,台南市,2007。
    連結:
  7. [13] A. Marin, P. Heitzmann, J. Twiefel and S. Priya, ”Improved pen harvester for powering a pulse rate sensor,” SPIE Conference Proceedings, vol. 8341, 2012, 83411D, pp.1-10.
    連結:
  8. [14] Y. Rao, S. Cheng and D. P Arnold, ”An energy harvesting system for passively generating power from human activities,” Journal of Micromechanics and Microengneering, vol. 23, 2013, 114012, pp. 1-9.
    連結:
  9. [15] E. Klimiec, K. Zaraska, W. Zaraska and S. Kuczy ’ nki, ”Micropower generators and sensors based on piezoelectric polypropylene pp and polyvinylidene fluoride PVDF films - energy harvesting from walking,” Applied Mechanics and Materials, vols. 110-116, 2012, pp. 1245-1251.
    連結:
  10. [16] T. Starner, ”Human-powered wearable computing,” IBM Systems Journal, vol. 35, 2008, pp. 618-629.
    連結:
  11. [18] J. A. Paradiso, ”Systems for human-powered mobile computing,” Design Automation Conference, vol. 43, 2006, pp. 645-650.
    連結:
  12. [24] 蕭述三、廖俊忠,「各國綠色能源發展重點項目以及未來的挑戰」,前瞻科技與管理,特刊,2010,第91-104頁。
    連結:
  13. [27] C. C. Ting, D. Y. Tsai and C. C. Hsiao, ”Developing a mechanical roadway system for waste energy capture of vehicles and electric generation,” Applied Energy, vol. 92, 2012, pp. 1-8.
    連結:
  14. [29] W. Yang, ”Footwear energy harvesting system,” U. S. Patent 7956476 B2, 2011.
    連結:
  15. [30] R. Chin, E. T. Hsiao-Wecksler and E. Loth, ”Fluid-power harvesting by under-foot bellows during human gait,” Journal of Fluids Engineering, vol. 134, 2012, 0811017pp.
    連結:
  16. [31] N. K. Verma, P. Singla and A. Roy, ”Energy harvesting by foot-propelled battery charger using shoe-model,” Advanced Materials Research, vols. 488-489, 2012, pp. 1268-1273.
    連結:
  17. [32] P. Bai, G. Zhu, Z. H. Lin, Q. Jing, J. Chen, G. Zhang, J. Ma and Z. L. Wang, ”Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions,” ACS Nano, vol. 7, 2013, pp. 3713-3719.
    連結:
  18. [33] T. C. Hou, Y. Yang, H. Zhang, J. chen, L. J. Chen and Z. L. Wang, ”Triboelectric nanogenerator built inside shoe insole for harvesting walkin genergy,” Nano Energy, vol. 2, 2013, pp. 856-862.
    連結:
  19. [34] 徐茂炫、黃彥豪、陳建亨,「台灣行政區域人口密度:1640-2008」,經濟論文叢刊,第39卷,第3期,2011,DOI:10.6277/ter.2011.393.4,第403-423頁。
    連結:
  20. [35] J. J. H. Paulides, J.W. Jansen, L. Encica and E.A. Lomonova, ”Human-powered smallscale generation system for a sustainable dance club,” Electric Machines and Drives Conference, 2009. IEMDC ’09. IEEE International, Miami, 2009, PP. 439-444.
    連結:
  21. [39] C. Y. Sue and N. C. Tsai, ”Human powered MEMS-based energy harvest devices,”Applied Energy, vol. 93, 2012, pp. 390-403.
    連結:
  22. [40] T. C. Hou, Y. Yang, H. Zhang, J. Chen, L. J. Chen and Z. L. Wang, ”Generating electricity while walking with loads,” Science, vol. 309, 2005, pp. 1725-1727.
    連結:
  23. [41] J. Blums, G. Terlecka and A. Vilumsone, ”The electrodynamic human motion energy converter with planar structure,” Advanced Materials Research, vol. 222, 2011, pp. 36-39.
    連結:
  24. [42] 蔡達毅,電磁感應式地面發電裝置開發,碩士論文,國立臺北科技大學機電整合研究所,台北,2012。
    連結:
  25. [44] 黃建邦,即動發電機研發及其應用研究,碩士論文,國立臺北科技大學機電整合研究所,台北,2011。
    連結:
  26. [49] G. P. Mancini, J. H. Noar and R. D. Evans, ”The physical characteristicd of neodymiumiron boron magnets for tooth extrusion,” European Journal of Orthodontics, vol. 21, 1999, pp. 541-550.
    連結:
  27. [54] 蔡明宏,氣壓缸作垂直運動及受負荷下壓力伺服控制之研究,碩士論文,國立成功大學機械工程研究所,台南市,1993。
    連結:
  28. [61] 利佳蓉,桿式噴藥機行走速度與變率噴量之研究,碩士論文,國立台灣大學生物產業機電工程學系,台北市,2012。
    連結:
  29. [1] ‘劉玉庚,淺析全球溫室效應原因與減緩溫室效應的方法,科學導報,第4卷,2013,第29頁。
  30. [4] U. S. and World Population Clock https://www.census.gov/popclock/,到訪日:7/2/2013。
  31. [6] 吳國光、張育誠、焦鴻文,行動發電廠淺談振動能源利用,經濟部能源局能源報導,第十四期,2010。
  32. [7] 台灣電力公司,「台灣電力公司永續報告書」,2013,第4頁。
  33. [9] 胡柳、何元庭、吳婷、鄧任華、朱本仁,「壓電發電技術的現狀及展望」,綠色科技,第十期,2010,第165-167頁。
  34. [10] 蔣繼緯,健身車永磁發電機之開發,碩士論文,逢甲大學電機工程學系,台中市,2010。
  35. [17] Z. L. Wang, ”Self-powered nanotech,” Scientific American, vol. 298, 1996, pp. 82-87.
  36. [19] NTT Develops Shoes That Power Gadgets, Mark’s Technology News, Oct 17, 2008.
  37. [20] SOLEPOWER,http://solepowertech.com/,到訪日:8/17/2013。
  38. [21] 株式會社音力發電,http://www.soundpower.co.jp/,到訪日:8/17/2014。
  39. [22] 周卓明、謝榮哲、許瑋祥,「壓電發電裝置」,台灣專利,編號. M334878,2006。
  40. [23] 王茹涵,「後石油時代—21世紀的能源新思維」,科學發展,第四百二十三期,2008,第68-73頁。
  41. [25] J. A. Boyd,FPump system,FU. S. Patent 2333614, 1941.
  42. [26] J. Dukess, ”Highway pressure-Responsive means for generating electricity by vehicles,”U. S. Patent 4322673, 1982.
  43. [28] J. S. Jang, ”Electrical generator apparatus, particularly for use on a vehicle roadway,” U. S. Patent 8164204 B2, 2012.
  44. [36] Pavegen http://pavegen.com/,到訪日:8/17/2013
  45. [37] K. C. Laurence and T. Philip, ”Energy harvesting,” W. O. Patent 2011/138585 A1, 2011.
  46. [38] 陳文咸,「壓電效應─歷史與應用」,科學月刊雜誌社,第一百五十六期,1982。
  47. [43] A. Bedford, W. Fowler and Y. Ahmad, Engineering Mechanics Dynamics, [Fifth Edition in SI Units], Singapore: Prentice Hall, 2008, pp. 112-117.
  48. [45] 教育部數位教學資源入口網,http://content.edu.tw,到訪日:8/17/2013。
  49. [46] 鍾玉堆、林光燦、黃顧文、董永財,電機學,台北市:新科技書局,1988,第85-175頁。
  50. [47] 馬乃孝、王慶善,直流/交流電路(上冊),台北市:儒林圖書有限公司,1988,第460-465頁。
  51. [48] R. L. Norton, Design of Machinery, [Third Edition], Singapore: McGraw Hall, 2004, pp. 45-47.
  52. [50] 朱鳳傳、康鳳梅、黃泰祥、施議訓、劉繼嘉、許榮添、簡慶郎、詹世良,機械設計製造手冊,台北市:全華圖書股份有限公司,2007,第10章,第24頁。
  53. [51] 蘇俊雄,交流發電機及電動機,台北市:聯華書局有限公司,1967。
  54. [52] 遠大培林有限公司,http://www.yhbearings.com.tw,到訪日:10/21/2012。
  55. [53] 亞德克國際集團,http://www.airtac.com.tw/,到訪日:3/15/2013。
  56. [55] 許震遠,油壓機械之理論與實務,台南市:復漢出版社,1984,第156-210頁。
  57. [56] http://goo.gl/qVXLg,到訪日:8/20/2013。
  58. [57] http://www.chanto.com.tw/upload/200732116411124931.pdf,到訪日:8/20/2013。
  59. [58] 張力群,可程式控制電路解析與應用(歐姆龍)OMRON,台北縣:全華圖書股份有限公司,2008。
  60. [59] 蕭子健、王智昱、儲昭偉,虛擬儀控程式設計LabView 8X,台北市:高立圖書有限公司,2007,第2.1-8.10頁。
  61. [60] 路昌工業股份有限公司,http://lutron1980.pixnet.net/blog/post/170977324,到訪日:3/12/2014。
  62. [62] 王正男、惠汝生,自動化量測系統-LaBVIEW,台北市:全華科技圖書股份有限公司,2000。
  63. [63] 惠汝生,LaBVIEW 8.X 圖控程式應用,台北市:全華科技圖書股份有限公司,2006。