Title

鈦合金管彎曲成形之模擬分析

Translated Titles

Simulation Analysis of the Bending Process of Titanium Alloy Tube

Authors

詹明睿

Key Words

彎管成形 ; 鈦合金管Ti-2Al-2.5Zr ; 有限元素分析 ; 田口法 ; Tube Bending Forming ; Ti-2Al-2.5Zr Titanium ; FEM ; Taguchi Methods

PublicationName

臺北科技大學製造科技研究所學位論文

Volume or Term/Year and Month of Publication

2014年

Academic Degree Category

碩士

Advisor

陳政順

Content Language

繁體中文

Chinese Abstract

一般管件彎曲成形會造成一些幾何上的缺陷,尤其對於高強度的管件容易產生明顯的回彈現象,所以本文針對Ti-2Al-2.5Zr鈦合金探討回彈量及減薄率以改善彎管尺寸的準確度及管件承受內壓的能力。為了能提高彎管的精度,選擇正確的成形參數為重要的考量,所以在此以有線元素分析技術針對∅10×t1鈦合金管做彎曲成形模擬分析,並且搭配田口法(Taguchi Methods)做實驗設計,其中有12個因子,各因子包含3個水準,利用L_27 (3^13 )直交表進行27組模擬分析,並且經由望小之訊號雜訊比(S/N ratios)得知最佳製程參數組合。本個案研究結果顯示影響回彈量程度依序為:材料性質、彎曲半徑、助推速度、心軸伸出量、彎曲模與管子摩擦係數、壓模與管子間隙、壓模與管子摩擦係數。而影響減薄率依序為:彎曲半徑、心軸伸出量、助推速度、材料性質、壓模與管子間隙。最後經過逼近理想解排序法TOPSIS(Technique for Order Preference by Similarity to Ideal Solution)分析找出回彈量及減薄率多品質的最佳化製程參數,結果顯示最佳化製程參數可比原始製程參數之回彈量減少8.57%,減薄率之百分比減少6.83%。

English Abstract

In general the bending of tubes will cause some geometric imperfections, especially for a high-strength tubes significant springback will occur after the unloading procedure. The aim of this paper is investigating springback and wall thickness reduction rate of Ti-2Al-2.5Zr titanium alloy tubes in order to improve the precision of specification and ability of bearing internal pressure. To achieve a precise bending deformation, the various forming conditions are important. This paper is based on a ∅10×t1 titanium alloy tube model, established by finite element analysis and uses Taguchi methods to do experimental design which has twelve control factors, each factor includes appropriate levels. The simulation analysis was used to analyze these twelve experiments of L_27 (3^13 ) orthogonal array and uses small the best characteristic of the signal to noise ratio that search the optimized combination of process parameters. The results showed that 1) Material property, the bending radius, relative boosting velocity, mandrel protrusion length, friction coefficient between bending die and tube, clearance between pressure die and tube and friction coefficient between pressure die and tube have a significant influence on springback. 2) Bending radius, mandrel protrusion length, relative boosting velocity, material property, clearance between pressure die and tube have a significant influence on wall thickness reduction rate. 3) After use TOPSIS evaluate method, reduce springback 8.57% and the percentage reduction in the rate of wall thickness reduction rate of 6.83%.

Topic Category 機電學院 > 製造科技研究所
工程學 > 機械工程
Reference
  1. [2] 韓明傑,迴轉彎曲法之彎管成形有限元素分析之探討,中興大學機械工程學系所,台中、台灣, 2008
    連結:
  2. [5] H. LI, K.P. SHI, H. YANG, Y.L. TIAN, Springback law of thin-walled 6061-T4 Al-alloy tube upon bending, Transactions of Nonferrous Metals Society of China, Vol. 22, pp. 357-363, 2012
    連結:
  3. [8] H. Li, H. Yang, F.F. Song, M. Zhan, G.J. Li, Springback characterization and behaviors of high-strength Ti–3Al–2.5V tube in cold rotary draw bending, Journal of Materials Processing Technology, Vol. 212, pp. 1973-1987, 2012
    連結:
  4. [11] Z.Q.Jiang,H.Yang, M. Zhan, Y.B.Yue, J.Liu, X.D.Xu, G.J.Li Establishment of a 3D FE model for the bending of a titanium alloy tube, International Journal of Mechanical Sciences, Vol.52, pp1115-11124, 2010
    連結:
  5. [12] R.J. Gu, H. YangM. Zhan, H. Li, H.W. Li, Research on the springback of thin-walled tube NC bending based on the numerical simulation of the whole process, Computational Materials Science, Vol.42, pp.537-549, 2008
    連結:
  6. [16] C.L. Hwang, K.Yoon, Multiple Attribute Decision Making an Introduction, CA: Sage, pp.38-45, 1995
    連結:
  7. [18] Y. Zhentao, Z. Lian, D. Ju, G. Haicheng, Investigation on monotonic and cyclic stress–strain characteristics of Ti–2Al–2.5Zr alloy, Materials Science and Engineering: A, Vol. 280, pp. 192-198, 2000
    連結:
  8. [1] http://cesafe.pmc.org.tw/shtm.php?fname=about_us
  9. [3] R.C. Hibbeler, Mechanics Of Materials, Pearson Education South Asia PTE LTD, 2008
  10. [4] 宋飛飛、楊合、李恒、詹梅、王豔、李光俊,TA18高強鈦管數控彎曲回彈工藝參數影響的顯著性分析,稀有金屬材料與工程,第1期,第43-48頁,西北工業大學,陝西西安、中國大陸,2013
  11. [6] 許傑,薄壁管數控彎曲精確成形過程參數優化研究,西北工業大學,陝西西安、中國大陸,2006
  12. [7] 栗振斌,數控彎管回彈的有限元數值預測與補償研究,西北工業大學,陝西西安、中國大陸,2004
  13. [9] 張旭光,數控彎管回彈的解析-數值模擬研究, 西北工業大學,陝西西安、中國大陸,2003
  14. [10] 蔡繼清,空調配管彎曲過程的數值模擬和振動分析,上海交通大學,上海、中國大陸,2006
  15. [13] 王則眾,林大維,快速原型製程最佳化研究,科技管理學刊,第4期,第111-138頁,實踐大學,台北、台灣,2005
  16. [14] ABAQUS/User manual version 6.12
  17. [15] ABAQUS/Theory manual version 6.12
  18. [17] 王航 ,徐燕靈, 孫巧豔, 肖林, 孫軍 ,細晶Ti-2Al-2.5Zr合金室溫/低溫低周疲勞行為及微觀結構, 金屬學報,第4期,第434-441頁,西安交通大學,陝西西安、中國大陸,2009
  19. [19] 石亦平、周玉蓉,ABAQUS有限元分析實例詳解,機械工業出版社,北京、中國大陸,2006
  20. [20] 愛發股份有限公司,ABAQUS實務入門引導,全華科技圖書股份有限公司,台北、台灣,2005
  21. [21] 李輝煌,田口方法:品質設計的原理與實務,高立圖書,台北、台灣,2008