Title

載重不連續之平均值在擬動態實驗之應用

Translated Titles

Average of Load Discontinuity Values for Pseudodynamic Testing

DOI

10.6841/NTUT.2009.00441

Authors

陳頡

Key Words

擬動態實驗 ; 時間步長 ; 脈衝不連續 ; pseudodynamic test ; time step ; discontinuity in impulse

PublicationName

臺北科技大學土木與防災研究所學位論文

Volume or Term/Year and Month of Publication

2009年

Academic Degree Category

碩士

Advisor

張順益

Content Language

繁體中文

Chinese Abstract

結構系統離散後的運動方程式在不連續的外力作用下,用較大的時間步長進行逐步積分法時會導致振幅誤差產生,為了克服外力不連續所產生的振幅誤差,便採用較小的時間步長。採用較小的時間步長,經過逐步積分法計算出的位移增量也相對較小,雖然在數值模擬下可以得到十分可靠的結果,但在進行擬動態實驗時,一旦位移增量接近或是小於量測儀器解析度的範圍,就有可能造成誤差掩蓋位移增量,導致不正確的實驗結果。同時較小的時間步長,也會拉長實驗所耗費的時間。本研究提出了一個克服衝擊載重不連續的擬動態實驗技術,只需在逐步積分法運算時,將衝擊載重的不連續點取其平均值,就可以消除由於外力不連續所引起的振幅誤差,因此可取較大的時間步長來進行實驗以防止誤差掩蓋的產生,而且在計算上不會增加計算量,減少了實驗的時間。透過數值模擬與擬動態實驗的驗證,可以更確定此法能夠消除外力不連續所導致的誤差。

English Abstract

The discreted equation of motion under the discontinuous impulse with larger time step will lead to an amplitude distortion in the step-by-step integration. Meanwhile, a research found that the amplitude distortion arising from that discontinuity of impulse is proportional to the step size. In this case, we can reduce amplitude distortion by using the very small time step which can be a reliable aspect in numerically computing, but will cause an inaccurate result in the Pseudo dynamic Testing if the value of step increment is near or under the resolution of the measure system. In this research, the method is proposed to overcome the inaccuracy of discontinuity at the end of an impulse. As processing the step-by-step integration method, to replace the loading input by the average value of the two discontinuity value at the integration point of load discontinuity. Consequently, this method will not only increase no extra calculating in the step-by-step solution but also reduce the extra impulse and displacement to further confirm that it works in both the numerically simulating and the Pseudo dynamic Testing.

Topic Category 工程學院 > 土木與防災研究所
工程學 > 土木與建築工程
工程學 > 市政與環境工程
Reference
  1. [1] Belytschko, T., and Hughes, T.J. R., Computational methods for transient analysis, New York : North-Holland, 1983.
    連結:
  2. [4] Chen, C.C., and Robinson, A.R., “Improved time-history analysis for structural dynamics calculations I: treatment of rapid variation of excitation and material nonlinearity,” Journal of Engineering Mechanics, vol. 119, no. 12, 1993, pp.2496-2513.
    連結:
  3. [6] Chang, S.Y., “Improved numerical dissipation for explicit method in psudodynamic test,” Earthquake Engineering and Structural Dynamics, Vol. 26, No3, pp.917-929, 1997.
    連結:
  4. [7] Chang, S.Y., “Explicit Pudodynamic Algorithm with Unconditional Stability,” Journal of Engineering Mechanics, ASCE, Vol. 128, No9, pp.935-947, 2002.
    連結:
  5. [8] Chang, S.Y., “Accuracy of Time History Analysis of Impulse,” Journal of Structural Engineering, ASCE, Vol. 1239, No3, pp.357-372, 2003.
    連結:
  6. [9] Hilber, H.M., Hughes, T.J.R., and Taylor, R.L. (1977). “Improved numerical dissipation for time integration algorithms in structural dynamics.” Earthquake Engineering and Structural Dynamics, Vol. 5, pp. 283-292
    連結:
  7. [10] Hughes, T.J.R., The finite element method : linear static and dynamic finite element analysis, Englewood Cliffs, N.J. : Prentice-Hall,1987.
    連結:
  8. [14] Takanashi, K., et al., “Nonlinear Earthquake Response Analysis of Structure by a Computer-Actuator On-Line System”, Bull. of Earthquake Resistant structure Research Center, Institute of Industrial Science, University of Tokyo, No. 8, 1975.
    連結:
  9. [15] Zienkiewicz,O.C, The finite element method, London; New York : McGraw-Hill, 1977.
    連結:
  10. [17] 張順益、蔡克銓和陳冠州,”對時間積分之運動方程式在擬動態試驗上之應用” 中國土木水利工程學刊,第九捲,第四期,第617~625頁,中華民國八十六年十二月。
    連結:
  11. [20] 張順益,”積分型擬動態試驗之誤差傳播”,中國土木水利工程學刊,第十一卷,第三期,第441~449頁,中華民國八十八年九月。
    連結:
  12. [21] 張順益,”動量平衡運動方程式”,中國土木水利工程學刊,第十三卷,第三期,第629~635頁,中華民國九十年十二月。
    連結:
  13. [22] 張順益,”無條件穩定外顯式積分法之發展”, 中國土木水利工程學刊,第十三卷,第一期,第61~70頁,中華民國九十年四月。
    連結:
  14. [25] 楊青昊,「克服衝擊載重不連續之擬動態實驗技術」,碩士論文,台北科技大學土木與防災研究所,2006。
    連結:
  15. 參考文獻
  16. [2] Clough, R. W., and Penzien, J. , Dynamics of structures, New York: McGraw-Hill, 1993.
  17. [3] Chopra, A. K., Dynamics of structures : theory and applications to earthquake engineering, Englewood Cliffs, N.J. : Prentice Hall, 1995.
  18. [5] Chang, S.Y., “A Technique for Overcoming Rapid Changes of Dynamic Loading in Time History Analysis,” Journal of the Chinese Institute of Civil and Hydraulic Engineering, Vol. 9, No3, pp.389-398, 1997.
  19. [11] Newmark, N.M. (1959). “A method of computation for structural dynamics.” Journal of Engineering Mechanics Division, ASCE, Vol. 85, pp. 67-94.
  20. [12] Shing, P.B. and Mahin, S.A., “Experimental Error Propagation in Pseudodynamic Testing,” Report No. UCB/EERC-83/12, Earthquake Engineering Research Center, University of California at Berkeley, June, 1983.
  21. [13] Shing, P.B. and Mahin, S.A., “Pseudodynamic Test Method for Seismic Performance Evaluation: Theory and Implementation”, Report No. UCB/EERC-84/01, Earthquake Engineering Research Center, University of California at Berkeley, January, 1984.
  22. [16] 張順益,”擬動態試驗”, 中華民國結構工程學會,結構工程,第十一卷,第四期,第79~84頁,中華民國八十五年十二月。
  23. [18] 張順益,”擬動態實驗之發展概況”,科學發展月刊,第二十七卷,第一期,第29~37頁,中華民國八十八年一月。
  24. [19] 張順益,”擬動態試驗在地震工程上之應用”,土木技術,四月號,第十四期,第51~59頁,中華民國八十八年四月。
  25. [23] 張糸涵,「歷時分析中克服衝擊載重不連續的技巧」,碩士論文,台北科技大學土木與防災研究所,2004。
  26. [24] 蔡金盛,「擬動態試驗在衝擊反應的應用」,碩士論文,台北科技大學土木與防災研究所,2005。
Times Cited
  1. 林耕賢(2010)。即時擬動態試驗之時間延遲補償。臺北科技大學土木與防災研究所學位論文。2010。1-117。