Title

以電漿熔射噴塗製備YSZ電解質與LSM陰極之特性研究

Translated Titles

The study on YSZ electrolyte and LSM cathode by plasma spray

Authors

曾煥明

Key Words

電漿熔射噴塗技術 ; 電化學反應 ; 陽極支撐 ; Plasma Spray ; Electrochemical reaction ; Anode Support

PublicationName

臺北科技大學製造科技研究所學位論文

Volume or Term/Year and Month of Publication

2014年

Academic Degree Category

碩士

Advisor

蘇程裕

Content Language

繁體中文

Chinese Abstract

固態氧化物燃料電池(solid oxide fuel cell, SOFC)為熱門的綠色能源之一,但因其工作溫度過高,發展受到了大大的限制,為了增進高溫型固態氧化燃料電池的發電效率以及降低工作溫度,本研究以電漿熔射噴塗技術製備電解質(YSZ)與陰極(LSM)膜層,藉由不同的噴塗次數來控制電解質與陰極的厚度,以降低其工作溫度。 本研究主要分為兩大部分,第一部分為Ni/8YSZ基材製作,以單軸成型法製備陽極(NiO/8YSZ)支撐的電極,材料部分並未加入造孔劑,以控制壓碇時的壓力與燒結參數,來獲得具有足夠強度且有足夠孔隙的陽極試片。第二部分為電解質與陰極製作,以電漿熔射噴塗技術,藉由控制熔射功率,以獲得緻密的電解質層以及多孔的陰極層。最後將製備完成之單元電池置於電化學量測平台上,來了解單元電池的特性,並利用電子顯微鏡觀察單元電池之微結構,再以X光繞射儀進行元素分析。研究結果發現於1300℃燒結的孔隙率可達30%,還原後孔隙率更可提升至36%,而塗層結構在熔射參數電流為600 A,氫氣流量為14 SLPM下可以製作出緻密的電解質層;在熔射參數電流為500 A,氫氣流量為6 SLPM下可以製作出多孔的陰極層。

English Abstract

Solid oxide fuel cell is one of the most popular green energy, but the operating temperature is too high, the development has been greatly restricted, in order to enhance the efficiency of power generation and reduce the operating temperature. In this study, we utilized the plasma spray technique to prepare the electrolyte layer (YSZ) and cathode layer (LSM). For the purpose of reduce the operating temperature, we controlling the thickness of electrolyte and cathode with different coating times. The study is divided into two parts, the first part is Ni/8YSZ substrate production, prepared by uniaxial forming the anode (NiO/8YSZ) supporting electrode with no pore-forming material. We control the pressure of anchor and sintering temperature to obtain a sufficient strength and sufficient porosity anode specimen. The second part is the electrolyte and cathode production. To controlling the spraying power to obtain a dense electrolyte layer and a porous cathode layer. Finally, the unit cell is placed on the electrochemical measurement platform to understand the characteristics, and measurement be used to the SEM, XRD analysis. And we can see by the experimental result, the value of porosity which sintering at 1300℃ showed that NiO/8YSZ sample was 30% and deoxygenated sample was increased to 36%. Spray coating structure in which the parameter is current 600 A, under a hydrogen flow rate of 14 SLPM can produce a dense electrolyte layer; spray coating parameters in current 500 A, the gas flow rate to 6 SLPM can produce a porous cathode layer.

Topic Category 機電學院 > 製造科技研究所
工程學 > 機械工程
Reference
  1. [1] World energy outlook, International Energy Agency (IEA), 2013.
    連結:
  2. [4] S. D. Kim, H. Moon, S. H. Hyun, J. Moon, J, Kim, H. W. Lee, “Performance and durability of Ni-coated YSZ anode for intermediate temperature solid oxide fuel cells”, Solid State Ionics, vol. 177(9-10), 2006, pp.931-938
    連結:
  3. [5] N.Q. Minh, “Solid oxide fuel cell technology – features and applications,” Solid State Ionics, vol. 174, 2004, pp.271-277
    連結:
  4. [6] Y. C. Yang, C. S. Hwang, C. H. Tsai, “Evaluations of the residual strains in the plasma sprayed multi-layer electrodes of the solid oxide duel cell”, Surface & Coating Technology, vol. 237, 2013, pp.341-348
    連結:
  5. [8] M. J. Lee, J. H. Jung, K. Zhao, B. H. Kim, Q. Xu, B. G. Ahn, S. H. Kim, S. Y. Kim, “Fabrication and electrochemical properties of SOFC single cells using porous yttria-stabilized zirconia ceramic support layer coated with Ni”, Journal of the EuropeanCeramic Society, vol. 34, 2014, pp. 1771-1776
    連結:
  6. [9] Chun-Huang Tsai, Chang-sing Hwang∗, Chun-Liang Chang, Jen-Feng Yu, Sheng-Hui Nien, “Post-heat treatment pressure effect on performances of metal-supported solid oxide fuel cells fabricated by atmospheric plasma spraying”, Journal of Power Sources, vol. 197, 2012, pp.145-153
    連結:
  7. [10] C. H. Tsai, C. S. Hwang., C. L. Chang, J. F. Yu, S. H. Nien “Post-heat treatment pressure effect on performances of metal-supported solid oxide fuel cells fabricated by atmospheric plasma spraying”, Journal of Power Sources, vol. 197, 2012, pp. 145-153
    連結:
  8. [11] L. Zhang, M. Li, X. Song, T. Guo, S. Zhu, W. Ji, H. Wang, “Preparation of half-cell by bi-layer wet powder spraying and tape casting for anode-supported SOFCs”, Journal of Alloys and Compounds, vol. 586, 2014, pp.10-15
    連結:
  9. [12] M.R. Somalu, V. Yufit, N.P. Brandon, “The effect of solids loading on the screen-printing and properties of nickel/scandia-stabilized-zirconia anodes for solid oxide fuel cells”, International Journal of Hydrogen Energy, vol. 38, 2013, pp. 9500-9510
    連結:
  10. [15] M. V. F. Schlupp, A. Kurlov, J. Hwang, Z. Yang, M. Dobeli, J. Martynczuk, M. Prestat, J.-W. Son and L. J. Gauckler, Fuel Cells From Fundamentals to Systems, Wiley-VCH, 2013, pp.658-665
    連結:
  11. [16] L. Jia “Preparation of YSZ film by EPD and its application in SOFC”, Journal of Aollys and Compounds, vol. 424, 2006, pp.299-303
    連結:
  12. [17] C. S. Hwang, C. H. Tsai, J. F. Yu, et al., “High performance metal-supported intermediate temperature solid oxide fuel cells fabricated by atmospheric plasma spraying”, Journal of Power Sources, vol. 196, 2011, pp. 1932-1939
    連結:
  13. [18] J. Chen, J. J. Huang, X. J. Li, Y. Liu, B. Qi, S. S. Jiang, X. S. Wang, “Plasma-sprayed coating of an apatite-type lanthanum silicate electrolyte for intermediate temperature solid oxide fuel cells (IT-SOFCs)”, Plasma Science and Technology, vol. 15, 2013, pp.673-676
    連結:
  14. [19] Y. C. Yang, T. H. Chang, Y. C. Wu, S. F. Wang, “Porous Ni/8YSZ anode of SOFC fabricated by the plasma sprayed method”, International Journal of Hydrogen Energy, Vol.37, 2012, pp.3746-3754
    連結:
  15. [20] A. B. Stamboul, E. Traversa, “Solid oxide fuel cell(SOFC):a review of an environmentally clean and efficient source of energy”, Renewable and Sustainable Energy Reviews, Vol.6, 2002, pp.433-455.
    連結:
  16. [21] 余河潔,以鍶摻雜銅酸做為中溫固態氧化物燃料電池,博士論文,國立成功大學材料科學與工程學系,台南,2005
    連結:
  17. [23] 謝文碩,高溫型固態氧化物燃料電池之製程與特性研究,碩士論文,國立臺北科技大學材料科學與工程研究所,台北,2008
    連結:
  18. [24] X. Deng, A. Petric, “Geometrical modeling of the triple-phase boundary in solid oxide fuel cells”, Journal of Power Sources, vol. 136, 2004,pp. 30-36
    連結:
  19. [26] S. P. Jiang, X. J. Chen, S. H. Chan, J. T. Kwok, K. A. Khor, “(La0.75Sr0.25)(Cr0.5Mn0.5)O3/YSZ composite anodes for methane oxidation reaction in solid oxide fuel cell”, Solid State Ionics, vol. 177, 2006, pp.149-157
    連結:
  20. [27] H. Koide, Y. Someya, T. Yoshida, T. Maruyama, “Properties of Ni/YSZ cermet as anode for SOFC”, Solid State Ionics, vol. 132, 2000, pp.253-260
    連結:
  21. [29] H. Inaba, “Ceria-based solid electrolytes” Solid State Ionics, vol. 83, 1996, pp.1-16
    連結:
  22. [30] G. M. Wolten, “Diffusionless phase transformations in zirconia and hafnia”, Journal of the American Ceramic Society, vol. 46, 1963, pp.418-422
    連結:
  23. [31] W. Z. Zhu, S. C. Deevi, “A review on the status of anode materials for solid oxide fuel cells”, Materials Science and Engineering: A, vol. 362, 2003, pp. 228-239
    連結:
  24. [2] 毛宗強,可再生能源叢書-燃料電池,北京,化學工業出版社,2005,第28-29頁
  25. [3] P. Holtappels, U. Stimming, W. Vielstich, H. A. Gasteiger, A. Lamm, Handbook of Fuel Cells-Fundamentals, New York: John Wiley & Sons, 2003, pp.335-340
  26. [7] 肖鋼,燃料電池技術,台北:全華圖書股份有限公司,2010,第262-275頁
  27. [13] J. Xing, X. H. Chen, W. H. Ma, R. Li, J. J. Yang, Jie Yu, “Anode-Supported LSGM Films Prepared by Slurry Spin Coating”, Advanced Materials Research, vol. 898, 2014, pp. 123-127
  28. [14] A. A. Solovyeva, N. S. Sochugovb, S. V. Rabotkinb, A. V. Shipilovab, I. V. Ionovb, A. N. Kovalchuka, A. O. Bordulevaa, “Application of PVD methods to solid oxide fuel cells,” Applied Surface Science, vol. 310, 2014, pp.272–277
  29. [22] 黃鎮江,燃料電池及其應用,北京:電子工業出版社,2005,第174-189頁
  30. [25] H. X You,G. D. Liu, X. W. Ding “Electrical performance of SOFC with anode of YSZ coating NiO” Journal of Dalian University of Technology, vol. 47 , 2007, pp. 497-500
  31. [28] S. C. Singhal,高溫固體氧化物燃料電池;原理設計應用,北京;科學出版社,2007,第71-79頁
  32. [32] 洪明豪,鑭鈣鐵氧化物作為固態氧化物燃料電池陰極之相關性質,碩士論文,國立臺灣科技大學化學工程系,台北,2006
  33. [33] 馬承九,燃料電池禮記,台北:三民書局,2008,第24-25頁
  34. [34] L. Pawlowski, The Science and Engineering of Thermal Spray Coating, New York: John Wiley & Sons, 1995, pp.79-82
  35. [35] Kvernes, M. Espeland, O. Norholm, “Plasma spraying of alloys and ceramics”, Scandinaviian Journal of Metallurgy, vol. 17, 1988, pp.8-16
  36. [36] M. Bhusari, “Plasma spray:The job shop perspective”, Proceedings of the International Thermal Spray Conference, 2001, pp.1289-1302
  37. [37] 蕭威典,熔射覆膜技術,台北:全華科技圖書股份有限公司,2006,第4.2-4.18頁
  38. [38] 徐仁輝,粉末冶金概論,台北:新文京開發出版有限公司,1980, 第196-201頁