Translated Titles

Numerical Analysis Aerodynamic Drag of a Sport Utility Vehicle



Key Words

空氣動力分析 ; 計算流體力學 ; 空氣阻力 ; Aerodynamic ; Computational Fluid Dynamic(CFD) ; Drag



Volume or Term/Year and Month of Publication


Academic Degree Category




Content Language


Chinese Abstract

車輛空氣動力在多年來的研究中,主要是應用於賽車、轎車及近年來逐漸受到重視的卡車,而鮮少有對於休旅車(Sport utility vehicle)的研究。近十年以來,休旅車越來越受到消費者的歡迎,世界各大車廠已將休旅車視為其銷售主力之一。休旅車主要具有旅行車的舒適性與貨卡車的動力及越野能力,並且兼具多項優點的背後,犧牲的是車輛的油耗,另外傳統的休旅車因為具有越野能力,採用高底盤及高車身的設計,風阻係數偏大,使得休旅車的油耗遠比轎車高出許多。所以本研究主要重點在於利用逆向工程技術用於自行設計1:5 SUV車輛模型,進行一系列的計算流體力學模擬探討,主要探討車輛在各雷諾數、距地高度、轉向角度及考慮地板與輪胎效應之狀態下的各流場狀態,將車身表面之壓力係數、尾流流動的趨勢及阻力係數…等進行一系列之討論。

English Abstract

Aerodynamics of vehicle were focused on racing cars, sedans and truck in this years. The SUV (Sport utility vehicle) research are very rare. In recent decades, SUV are more popular for the consumers and SUV become the main product in the world’s major automakers. SUV have the comfort of the wagon and power of the trucks. But in many advantages is need to sacrifice the fuel consumption. The traditional SUV with off-road capability are using high chassis and high body design. The drag coefficient is more bigger than sedans. This study is focus on using the reverse engineering techniques from the self-design 1:5 SUV model and carry on a series of the CFD simulation. Discusses Re, height from the ground, yaw angle, floor effect and tire effect. Using pressure coefficient, wake flow and drag coefficient to discuss the flow effect around the vehicle.

Topic Category 機電學院 > 車輛工程系所
工程學 > 交通運輸工程
  1. [1] R. M. Wood, and S. X. Bauer, “Simple and low-cost aerodynamic drag reduction devices for tractor-trailer trucks,” SAE paper, pp. 01-3377, 2003.
  2. [3] 江豐順, “汽車外裝造型設計整車測試比例之研究,” 碩士論文, 國立台北科技大學, 台北, 2011.
  3. [4] W.-H. Hucho, “Aerodynamics of road vehicles,” 1987.
  4. [7] L. Sterken, and L. Lofdahl, "Experimental and Numerical Investigations of the Base Wake on an SUV."
  5. [8] S. Kandasamy, B. Duncan, H. Gau, F. Maroy, A. Belanger, N. Gruen, and S. Schaufele, Aerodynamic Performance Assessment of BMW Validation Models using Computational Fluid Dynamics, SAE Technical Paper, 2012.
  6. [9] L. Sterken, L. Lofdahl, S. Sebben, and T. Walker, Effect of Rear-End Extensions on the Aerodynamic Forces of an SUV, SAE Technical Paper, 2014.
  7. [10] C. Friedl, and M. Watts, Drag Coefficient Measurement, CFD Simulation and Validation of an Automotive Body, SAE Technical Paper, 2013.
  8. [11] J. Wojciak, B. Schnepf, T. Indinger, and N. Adams, “Study on the Capability of an Open Source CFD Software for Unsteady Vehicle Aerodynamics,” SAE International Journal of Commercial Vehicles, vol. 5, no. 1, pp. 196-207, 2012.
  9. [12] M.-H. Kim, J.-Y. Kuk, and I.-B. Chyun, “A numerical simulation on the drag reduction of large-sized bus using rear-spoiler,” Simulation, vol. 2013, pp. 06-11, 2002.
  10. [14] P. Gillieron, and F. Chometon, "Modelling of stationary three-dimensional separated air flows around an Ahmed reference model." pp. 173-182.
  11. [15] S. Ahmed, G. Ramm, and G. Faltin, “Some salient features of the time-averaged ground vehicle wake,” Changes, vol. 2012, pp. 12-11, 1984.
  12. [16] P. N. Krishnani, “CFD study of drag reduction of a generic sport utility vehicle,” American Society of Mechanical Engineers, 2009.
  13. [17] J.-D. Kee, M.-S. Kim, and B.-C. Lee, “The COANDA flow control and Newtonian concept approach to achieve drag reduction of passenger vehicle,” SAE Paper, pp. 01-1267, 2001.
  14. [18] T. Morel, "The effect of base slant on the flow pattern and drag of three-dimensional bodies with blunt ends," Aerodynamic Drag Mechanisms of Bluff Bodies and Road Vehicles, pp. 191-226: Springer, 1978.
  15. [19] A. A. Lawson, R. G. Dominy, and A. Sheppard, “A comparison of on-track and wind tunnel surface pressure measurements on a compact SUV,” SAE transactions, vol. 112, no. 6, pp. 758-767, 2003.
  16. [20] J. Howell, C. Sherwin, M. Passmore, and G. Le Good, “The aerodynamic drag of a compact SUV as measured on-road and in the wind tunnel,” 2002.
  17. [21] 瑞比德科技國際股份有限公司官方網站:
  18. [27] L. Janssen, and W. Hucho, “The effect of various parameters on the aerodynamic drag of passenger cars,” Advances in Road Vehicle Aerodynamics, Cranfield, UK, pp. 223-253, 1973.
  19. [2] S. Macey, and G. Wardle, “H-point: The Fundamentals of Car Design & Packaging,” 2009.
  20. [5] 車輛能量消耗分布圖片來源:http://www.fueleconomy.gov/feg/atv.shtml.
  21. [6] J. Howell, and A. Gaylard, “Improving SUV Aerodynamics,” Motor Industry Research association (MIRA) Technical Paper.
  22. [13] M. Koike, T. Nagayoshi, and N. Hamamoto, “Research on aerodynamic drag reduction by vortex generators,” Mitshubishi Motors Technical Review, no. 16, 2004.
  23. http://www.rapidtech.com.tw/cht/Reversed%20Engineering.html.
  24. [22] 馬路科技顧問股份有限公司官方網站:
  25. http://www.rat.com.tw/products_view-id-1-cid-1.html.
  26. [23] H. Versteeg, and W. Malalasekera, "An introduction to computational fluid dynamics–The finite volume method," Addison Wesley Longman, 1995.
  27. [24] H. K. Versteeg, and W. Malalasekera, An introduction to computational fluid dynamics: the finite volume method: Pearson Education, 2007.
  28. [25] B. E. Launder, and D. Spalding, “The numerical computation of turbulent flows,” Computer methods in applied mechanics and engineering, vol. 3, no. 2, pp. 269-289, 1974.
  29. [26] F. Inc., “ANSYS Fluent 12.0 User's Guide,” 2009.