Translated Titles

Fabrication and Properties Evaluation of Sound-absorption/Thermal-insulation Porous Electromagnetic Shielding Composite Boards





Key Words

PET ; 吸音 ; 隔熱 ; 飛機機艙中隔音 ; PET ; nonwoven ; sound-absorption ; thermal-insulationn



Volume or Term/Year and Month of Publication


Academic Degree Category




Content Language


Chinese Abstract

由於近年工、商業進步迅速,工廠大量增設各種機械設備,機械運轉時所造成噪音亦成為居家困擾之因素。在生活中,不僅是工廠噪音影響民生生活品質,小至便利超商的開門聲,大至交通、飛機等噪音困擾。本論文即針對噪音吸收之電磁屏蔽孔隙型吸音/隔熱複合材料之製程技術及其特性評估。 本研究擬使用中空三維捲曲PET纖維與低熔點PET纖維開織、混棉後,依照不同參數之比例,找出最佳參數並校正,經過混合梳理、纖維網成型、預針軋基布棉網,製成中空三維捲曲PET/低熔點PET,最後透過針軋疊層、熱壓複合後,測試吸音係數、回彈率、熱傳導、表面觀察、抗穿刺、拉伸、撕裂、電磁屏蔽等等製成多層吸音PET/LPET複合不織布之基布。再依照不同比例修正,加入玄武岩梭織物,增強其機械性能與吸音性能,找出最佳化參數後,加入導電高分子薄膜於上下兩層,增加抗電磁波干擾之係數,最後製成工業級電磁屏蔽孔隙型吸音/隔熱複合板材。 本實驗最佳參數為中空三維捲曲PET與低熔點PET混合比例為7:3,基布之基重350 g/m2,針軋針深為-0.5cm,最佳樣本參數為樹脂黏合導電高分子箔膜,複合於第二層反面以及第三層反面,皆具有極佳之吸音係數0.91,以平均數值比較,是以疊層複合於第二層為最佳化之吸音參數。 關鍵字:PET、吸音、隔熱、飛機機艙中隔音

English Abstract

The rapid growth of commercial and industrial sectors results in the factory equipping with a large number of machinery. The noises that caused by operation of machine not only become a factor of distress but also affect people's quality of life. The purpose of this research focuses on the fabrication and properties evaluation of sound-absorption/ thermal-insulation porous electromagnetic shielding composite boards. In this research, the three-dimensional crimp polyester fiber and low-melting fiber is used to fabricate the PET nonwoven fabric through opening, blending, carding, lapping, and needle-punching. The optimal parameters of mixed proportion are then carefully examined. Finally, the PET nonwoven fabric and basalt woven fabric (BW) are used to form the PET/BW nonwoven composites through multiple needle-punching techniques and thermal bonding process. The properties of sound absorption, rebound resilience, thermal conductivity, puncture resistance, tensile strength for the nonwoven composites are properly evaluated. The best parameter of this experiment proportion is 7:3. The weight of fiber is 350 g/ m2. The depth is -0.5 cm. The best sample is resin adhesive Conductive polymer foil. And combine the second opposite layer and third opposite layer. This sample with the best coefficient of sound-absorption is 0.91. Compare with this average value Keywords: PET , nonwoven , sound-absorption , thermal-insulation

Topic Category 工程與科學學院 > 航太與系統工程學系
工程學 > 交通運輸工程
  1. [8] 姜達銘、楊宗龍(1999)。薄化之高吸音率複合材料開發研究。中華民國振動與噪音工程學會第七屆學術研討會,新竹,47-54。
  2. [9] Dr. Mohammad S. Al-Homoud. (2005). Performance characteristics and practical applications of common building thermal insulation materials, Building and Environment. 40(3):353-366.
  3. [11] Sarier,N. and Onder, E. (2008). Thermal insulation capability of PEG-containing polyurethane foams, Thermochimica Acta. 475(1-2): 15-21.
  4. [12] Narang, P. P. (1995). Material parameter selection in polyester fibre insulation for sound transmission and absorption, Applied Acoustics, 45(4), 335-358.
  5. [13] Kunio Kashino, Hiroshi Murase, (1999). A sound source identification system for ensemble music based on template adaptation and music stream extraction.
  6. [14] A. Uris, A. Llopis, J. Llinares, (1999). Effect of the rockwool bulk density on the airborne sound insulation of lightweight double walls.
  7. [15] Kyoichi Watanabe (1999). Development of high-performance all-polyester sound-absorbing materials.
  8. [16] Charles D Ross (2000). Outdoor sound propagation in the US Civil War.
  9. [17] P. Joseph (2003). Multi-mode sound transmission in ducts with flow.
  10. [18] Nicola Prodia, Sylvia Veleckab (2003). The evaluation of binaural playback systems for virtual sound fields.
  11. [19] Han-Seung Yang (2003). Rice straw–wood particle composite for sound absorbing wooden construction materials.
  12. [20] D. Roy Mahapatra (2005). Equivalent constitutive model-based design of wave-absorbing material system and controller.
  13. [21] Sang-Kwon Lee (2010). Improvement of impact noise in a passenger car utilizing sound metric based on wavelet transform.
  14. [22] B.R. Kim (2010). ntrinsic electromagnetic radiation shielding/absorbing characteristics of polyaniline-coated transparent thin films.
  15. [23] Olivier Doutres (2013). Using shock waves to improve the sound absorbing efficiency of closed-cell foams.
  16. [24] Naveen Garga, Anil Kumara, Sagar Majib (2013). Significance and implications of airborne sound insulation criteria in building elements for traffic noise abatement.
  17. [25] Celia Arenas, (2013). Use of co-combustion bottom ash to design an acoustic absorbing material for highway noise barriers.
  18. [26] Aleksandr N. Anoshkin , (2014). Repair of damage in aircraft composite sound-absorbing panels.
  19. [27] Simone Secchi,Francesco Asdrubali (2015). Experimental and environmental analysis of new sound-absorbing and insulating elements in recycled cardboard.
  20. [28] Takeshi Okuzono、Kimihiro Sakagami (2015). A finite-element formulation for room acoustics simulation with microperforated panel sound absorbing structures: Verification with electro-acoustical equivalent circuit theory and wave theory.
  21. [29] Takafumi Shimizua, Yasuhito Kawaib, Daiji Takahashic (2015). Numerical analyses and experimental evaluation of reduction technique for sound transmission through gaps.
  22. [30] P.B. Taylor, E.H. Mathews, M. Kleingeld, G.W. Taljaard, (2000). The effect of ceiling insulation on indoor comfort. doi:10.1016/S0360-1323(99)00025-6.
  23. [31] C.K. Krishnaprakasa, K. Badari Narayanaa, Pradip Duttab, (2000). Heat transfer correlations for multilayer insulation systems. doi:10.1016
  24. [32] G.C. Bakos, (2000). Insulation protection studies for energy saving in residential and tertiary sector. doi:10.1016/S0378-7788(99)00016-X.
  25. [35] Markus Spinnlera, Edgar R.F. Wintera, Raymond Viskantab (2004). Studies on high-temperature multilayer thermal insulations. doi:10.1016.
  26. [36] Rosanne Walker, Sara Pavia, (2015). Thermal performance of a selection of insulation materials suitable for historic buildings. doi:10.1016.
  27. [37] Edmund Konroyd-Bolden , Zaiyi Liao, (2015). Thermal window insulation. doi:10.1016/j.enbuild.2015.10.005.
  28. [38] Juan P. Hidalgo, Stephen Welch, Jose L. Torero, (2015). Performance criteria for the fire safe use of thermal insulation in buildings. doi:10.1016/j.conbuildmat.2015.10.014.
  29. [48] Narang, P. P. (1995), Material parameter selection in polyester fibre insulation for sound transmission and absorption, Applied Acoustics, 45(4), 335-358.
  30. [49] Zhang, C. H., Li, J. Q., Hu, Z., Zhu, F.L. and Huang, Y. D.. Correlation between the acoustic and porous cell morphology of polyurethane foam: Effect of interconnected porosity, Materials and Design, 41, (2012).
  31. [54] Enrico Quagliarini. (2016). Basalt fiber ropes and rods: Durability tests for their use in building engineering, Journal of Building Engineering, 5, 142-150.
  32. [56] V. Fiore, T. Scalici, G. Di Bella, A. Valenza. (2015). A review on basalt fibre and its composites, Composites Part B: Engineering, 74, 74-79.
  33. [57] T. Bhat, V. Chevali, X. Liu, S. Feih, A.P. Mouritz. (2015). Fire structural resistance of basalt fibre composite, Composites Part A: Applied Science and Manufacturing, 71, 107-115.
  34. [63] Hongtao Guan, Shunhua Liu, Yuping Duan, Ji Cheng,(2005), Cement based electromagnetic shielding and absorbing building materials.
  35. [64] Eva Hakansson, Andrew Amiet, Akif Kaynak , (2006), Electromagnetic shielding properties of polypyrrole/polyester composites in the 1–18 GHz frequency range.
  36. [65] Yong-jun Hu , Hai-yan Zhang, Feng Li, Xiao-ling Cheng, Tian-li Chen (2010), Investigation into electrical conductivity and electromagnetic interference shielding effectiveness of silicone rubber filled with Ag-coated cenosphere particles.
  37. [66] D. Micheli , R. Pastore , A. Vricella, R.B. Morles, M. Marchetti, A. Delfini, F. Moglie, V. Mariani Primiani, (2014), Electromagnetic characterization and shielding effectiveness of concrete composite reinforced with carbon nanotubes in the mobile phones frequency band.
  38. [67] C.H. Phan , M. Mariatti , Y.H Koh (2015), Electromagnetic interference shielding performance of epoxy composites filled with multiwalled carbon nanotubes/manganese zinc ferrite hybrid fillers.
  39. [1] 張錦松、韓光榮、張錦輝(2007)。噪音振動控制。台北:高立出版社,1-2、176-209。
  40. [2] 蔡國隆、王光賢、涂聰賢(2008)。聲學原理與噪音量測控制。台灣:全華圖書股份有限公司,1-2。
  41. [3] 蘇德勝(1997)。噪音原理及控制。台北:臺隆書店,2。
  42. [4] 胡華康、杜曉軍(1990)。 北京:紡織工業出版社,1-2 。
  43. [5] 邱銘杰、張英俊、藍天雄(2008)。噪音振動之原理與應用。台灣:東華書局,35-36。
  44. [6] Magrab, E. B. (1975). Environmental noise control. Washington, Department of Civil and Mechanical Engineering, the Catholic University of American, 312.
  45. [7] 張柏成(1985)。噪音控制之原理與實務。財團法人徐氏基金會,台北市,56-58 。
  46. [10] International Energy Outlook. (2009). Energy information aAdministration official energy statistics from the U.S. government. From http://www.eia.gov/forecasts/ieo/index.cfm
  47. [33] 楊鼎宜、鄭克仁、劉志勇、孫佛(2001)。牆體材料節能性能測試技術之研究。建築技術,34(10),728-730。
  48. [34] 楊昭、郁文紅、張甫仁(2004)。節能建築複合牆體之非穩態熱工性能。天津大學學報,37(11),975-979。
  49. [39] KANG, GIL-HO; JUNG, SEONG-MOON; KANG, (2014),提高吸音性能的吸音片及其製備方法. 102123652 .
  50. [40] 林玉成(1995)。汽機車多膨脹室排氣管吸音隔熱裝置之改良。中華民國公告號:261207。
  51. [41] 張連壁 CHANG, LIANNBE(2007) 。隔間或裝潢裝置。中華民國公告號:M308290。
  52. [42] 劉金德 LIU, CHIN DER(2008) 。輕量化車用內裝結構。中華民國公告號:M328955。
  53. [43] 劉金德 LIU, CHIN DER(2009) 。車用內裝防火結構。中華民國公告號:M369338。
  54. [44] 張大為(2015) 。多介質吸音材料。專利編號:I505930。
  55. [45] OGAWA,MASANOR,FUJII,MAKOTO,MIZUTANI, NAOHIRO(2014)。吸音性表皮材,及使用此吸音性表皮材的吸音材。專利編號:I441160。
  56. [46] Stephen Dance, (2011), Sound Absorbing Device. US 20110220435 A1.
  57. [47] STEUER.MARTIN,BEEKHUIZEN,JAN,KELLER.UWE,ISOUE, KOICHIRO (2014),具吸音性質之含塑化劑之聚乙烯基縮醛的多層薄膜,歐洲,專利編號:I444292。
  58. [50] Ancu?a Elena TIUC, Tiberiu RUSU, Ovidiu VASILE.. The Influence of Perforations on the Surface of a Sound Absorbing Material on the Sound Absorption Coefficient, Romanian Journal of Acoustics and Vibration, 59-62, (2013).
  59. [51] 吳文演,「高科技新功機能性纖維材料與應用」,第61-67頁,2004。
  60. [52] 于佛東、儲才元(2002)。紡織物理。東華大學出版社,216-218。
  61. [53] 李妍、紀敏(2004)。影響建築保溫性能的幾個性能指標,建築應用,4。
  62. [55] Cory High, Hatem M. Seliem, Adel El-Safty, Sami H. Rizkalla. (2015). Use of basalt fibers for concrete structures, Construction and Building Materials, 96, 37-46.
  63. [58] 楊薇炯 (2006),“石頭變絲”的連續玄武岩纖維主要性能特性解析。上海圖書上海科學技術情報研究所,上海科文光碟有限股份公司設計製作。
  64. [59] 莊瑀珺 (2013),三明治網眼吸音隔熱PU發泡複合板材備製技術及其特性評估。逢甲大學纖維與複合材料學系研究所,60。
  65. [60] 台灣機能紡織品,防電磁波紡織品,驗證服務項目,From http://tft.ttfapproved.org.tw/introduction/ftts.asp?qtype=FTTS-FA-003
  66. [61] 中華民國交通部台灣區高速公路局(2010),第三章-高速公路噪音潛勢分析與防制措施之研究,富聯工程顧問有限公司研究,3-27。
  67. [62] 國家衛生研究院-國家環境毒物研究中心(2013),電磁波健康效應之評估報告,3。
  68. [68] 蔡易儒、雷澄環。2007。PET蓬鬆阻燃非織布隔熱填充材料之製成分析與性能評估。逢甲大學紡織工程研究所論文,34。