English Abstract
|
This study aims to modify the existed two-dimensional numerical model for density current simulation, reasonably simulating the movement of density current in order to understand the changes of flow rate, thickness and concentration in the development processes. The numerical model composed of shallow water equations, suspended load convection-diffusion equation and sediment continuity equation. This study adopts explicit finite-difference scheme differentiating the governing equations and deals with computational mesh using leap-frog scheme. In terms of the correlation between flow field and topographical evolution, an uncoupled computation is adopted. Besides, This syudy also carry out the analysis of stability, convergence and continuity to ensure the rationality and correction for numerical model.
According to the past studies, the form of density current is highly related to the inflow rate, concentration and bottom slope. Therefore, they are set to be as the control conditions to proceed numerical simulation for density current. The numerical model has to satisfy the stable conditions created by C.F.L. and get the maximum courant number (0.1), examine the convergence of flow field, calculate the volume of inflow and outlet for checking the continuity, and analyze the sensitivity of mesh size. Consequently, the results can be achieved to the requirement for the numerical model. Experimental results (Hsu, 2002) were adopted for the model’s valibration and verification. The result for parameter calibration reveals that when slope value approach critical slope value (0.006,) inflow concentration value equals 10.26(g/L), and inflow rate is set between 0.16(l/sec) to 0.24(l/sec), it represents the dimensionless entrainment coefficient (Ew) ranges from 0.002123 to 0.0159, and Richardson number (Ri) ranges from 0.063287 to 1.307725, which numerical model can be calculated steadily.
Simulation results show that the more volume of inflow gets, the faster speed density current proceed, when the concentration of inflow is fixed. Moreover, when volume of inflow is fixed, the inflow concentration is getting more, its speed is faster than that of little concentration of inflow. However, the changes of density current will decrease with moving distance. With the time become long, if the headstream keeps flowing, the concentration will climb up to a fixed value. Under the circumstance of unique concentration of inflow, when volume of inflow is set a lot, the thickness of density current will become thicker in the same section. Calculation for the model and experimental consequence are quite same.
|
Reference
|
-
05.吳鴻業(2006)。陡坡瞬間入匯流體引致各類型之異重流運動現象。國立中興大學水土保持學系碩士論文。
連結:
-
07.李振裕(2004)。集水區水砂生產及輸送之整合研究。國立成功大學水利及海洋工程研究所碩士論文。
連結:
-
15.蔡明璋(2004)。複式斷面河道一維與平面二維水理現象模擬之研究。國立成功大學水利及海洋工程研究所碩士論文。
連結:
-
16.賴盈達(1993)。二維淺水波在不規則底床運行之研究。中原大學土木工程學系碩士論文。
連結:
-
01.Akiyama, J. and Stefan, H.G. (1984) “Plunging Flow into a Reservoir”,Journal of Hydraulic Engineering, ASCE, 110, HY4, 484-499.
連結:
-
02.Alexander, J., and Mulder, T. (2002). “Experimental quasi-steady density currents.” Marine Geology, 186(3), 195-210.
連結:
-
03.Altinakar, S., Graf, W.H. and Hopfinger, E .J. (1996) ‘‘Flow structurein turbidity currents”, Journal of Hydraulic Research, 34, 5,713-718.
連結:
-
05.Choux, C. M. A., Baas, J. H., McCaffrey, W. D., and Haughton, P. D. W. (2005). “Comparison of spatio–temporal evolution of experimental particulate gravity flows at two different initial concentrations, based on velocity, grain size and density data.” Sedimentary Geology, 179, 49-69.
連結:
-
06.Dallimore, C. J., Imberger, J., and Hodges, B. R. (2004). “Modeling a Plunging Underflow.” Hydraulic Engineering, 130(11), 1068-1076.
連結:
-
07.Dietrich, W. E. (1982). “Settling velocity of natural particles.” Water Resources Research,18, 1615-1626.
連結:
-
08.Drago, M.(2002). “A coupled debris flow–turbidity current model.” Ocean Engineering, 29(14), 1769-1780.
連結:
-
09.Felix, M., Sturton, S., and Peakall, J. (2005). “Combined measurements of velocity and concentration in experimental turbidity currents.” Sedimentary Geology, 179, 31-47.
連結:
-
10.Fukushima, Y., Parker, G., and Pantin, H. M. (1985). “Prediction of ignitive turbiditycurrent in Scripps Submarine Canyon.” Geology, 67, 55-81.
連結:
-
11.Garcia, M. (1993). “Hydraulic jumps in sediment-driven bottom currents.” J. Hydraulic Eng 119, 1094-1117.
連結:
-
12.Huang, H., Lmran, J., and Pirmez, C. (2005). “Numerical Model of Turbidity Currents with a Deforming Bottom Boundary.” Hydraulic Engineering, ASCE, 131, 283-293.
連結:
-
13.Kazuhisa, C., and Yasuaki, O. (1990). “Dynamics of Turbidity Currents Measured in Katsurazawa Reservoir, Hokkaido, Japan.” Journal of Hydrology, 117, 323-338.
連結:
-
14.Komar, P. D. (1985). “The hydraulic interpretation of turbidites from their grain sizes and sedimentary structures.” Sedimentology, 32, 395-407.
連結:
-
15.Kubo, Y. (2004). “Experimental and numerical study of topographic effects on deposition from two-dimensional, particle-driven density currents.” Sedimentary Geology, 164, 311-326.
連結:
-
16.Kubo, Y., and Nakajima, T. (2002). “Laboratory experiments and numerical simulation of sediment-wave formation by turbidity currents.” Marine Geology, 192, 105-121.
連結:
-
17.McCaffrey, W. D., Choux, C. M., Baas, J. H., and Haughton, P. D. W. (2003). “Spatio-temporal evolution of velocity structure, concentration and grain-size stratification within experimental particulate gravity currents.” Marine and Petroleum Geology, 20, 851-860.
連結:
-
18.Mulder, T., Syvitski, J. P. M., and Skene, K. I. (1998). “Modeling of erosion and deposition by turbidity currents generated at river mouths.” J. Sediment Res., 68, 124-137.
連結:
-
19.Simpson, J. E.(1972),“Effects of the lower boundary on the headof a gravity current.?紃ournal of Fluid Mechanics, 53:759-768.
連結:
-
中文文獻
-
01.中國水利學會泥沙專業委員會(1992)。泥沙手冊。第二篇第八章第一節,頁286,中國環境科學出版社。
-
02.王光謙、周建軍和楊本均(2000)。二維泥沙異重流運動的數學模型。應用基礎與工程科學學報,第八卷第一期,頁52-60。
-
03.王建忠(2002)。多重網格法於河口沖淤模式之數值模擬。國立中興大學土木估成學系碩士論文。
-
04.王慶中、陳富安、王秀清和王兵(2006)。清渾水界面探測器在水庫異重流測驗中的應用。人民黃河,第二十八卷第二期,頁23與68。
-
06.李珍和台樹輝(2006)。對小浪底水庫首次人工塑造異重流的探討。水力發電,第三十二卷第二期,頁61-62。
-
08.俞維昇(1991)。水庫沈滓運動特性之研究。國立台灣大學土木工程研究所博士論文。
-
09.徐小微(2002)。鹽水異重流之潛入現象與嚴懲變化分析。逢甲大學土木及水利工程研究所碩士論文。
-
10.商嘉瑞(2003)。河系一維變量流結合卡門濾波回饋演算模式。國立台灣大學土木工程學系碩士論文。
-
11.許全中(2002)。平面二維有限體積法應用於穿臨界流河槽水理與沖刷之模擬。逢甲大學土木及水利工程研究所碩士論文。
-
12.陳哲維(1993)。平面二維水庫沖淤模式之研究。國立成功大學水利及海洋工程研究所碩士論文。
-
13.曾志民(1994)。河口地形變動模式之研究。國立成功大學水利及海洋工程研究所碩士論文。
-
14.蔡宗憲(2004)。變量鹽水異重流實驗之現象觀察與分析。逢甲大學水利工程學系碩士班碩士論文。
-
17.錢寧、萬兆惠(1981)。泥砂運動力學。第十四章、異重流,科學出版社。
-
18.錢寧、萬兆惠(1958)。渾水的黏性及流型。泥砂研究,第三卷第三期,頁52-77。
-
-
外文文獻
-
04.Amiruddin, Shinji, S., and Hideo, S. (2004). “Analysis of Three-Dimensional Sediment Gravity Flows.” Annuals of Disas. Prev. Res. Inst., Kyoto Univ., 47B, 617-633.
-
20.Vreugdenhil, C. B. (1989). Computational hydraulics, Spriger-Verlag, New York, 94-97.
-
21.Yoshio, M., Masanori, M., and Yuichiro, F. (1974). “Investigation on Turbidity in Amagase Reservoir.” Annuals of Disas. Prev. Res. Inst., Kyoto Univ., 17B, 585-596 (in Japanese)
|