Title

次微米級玻璃結構直接壓印成型之理論分析與實驗研究

Translated Titles

Theoretical and Experimental Study on Formation of Glass Micron Structures by Using Imprinting Process

DOI

10.6843/NTHU.2008.00296

Authors

呂英嘉

Key Words

玻璃成型 ; 奈米壓印 ; 實驗機台 ; 製程模擬 ; 有限元素法 ; Glass forming ; Nanoimprint ; Experimental setup ; Process simulation ; Finite element method

PublicationName

清華大學動力機械工程學系學位論文

Volume or Term/Year and Month of Publication

2008年

Academic Degree Category

碩士

Advisor

宋震國

Content Language

繁體中文

Chinese Abstract

玻璃材料比高分子有更好的光學特性及生物親和性,而熱壓印製程是一種可大量複製與量產的技術,若能有系統地由加工模型的建立與模擬,掌握玻璃熱壓的加工條件,配合設備的設計進行相關的實驗,是一個極具發展潛力的議題。 本文利用ANSYS Multiphysics 10.0建立玻璃壓印模型,以假設玻璃為牛頓流體出發,根據流體之壓力場、速度場分佈,以解釋壓印參數對於玻璃熱直壓之成型影響,如模具下壓速度、壓印溫度、模具之尺寸效應、基材效應、玻璃填充形狀等,並討論其成型機制,配合實驗結果與模擬相互討論。文中並針對玻璃熱壓實驗結果,對模具以及玻璃材料選擇上提出建議,且在低溫625 K加工條件下,配合所建立之實驗機台,成功地在玻璃上壓製出最小節距為291.3 nm、成型高度為138.3 nm之圖案,且在其適當壓印參數下具有高度之重現性。

English Abstract

Glass possesses better optical characteristics and bio-compatibility than most polymeric materials. Besides, the nanoimprinting process is considered to be areproducible and mass production technique. In this study , ANSYS Multiphysics 10.0 is employed to build the simulation model for glass imprinting process. Assuming glass is a Newtonian fluid as it is over glass transition temperature, the simulation investigates the influences of parameters on the formability of glass imprinting such as the imprinting velocity, working temperature, the size effect of the mold, substrate effect and filling geometric forms. According to the experimental and simulation results , the glass forming mechanism by imprinting process is identified and the material, geometry, and process parameters are recommend. This study successfullydirect imprint nano/micro patterns on the glass substrate; the pitch size is minimized to 293.1 nm and the formation height 138.3 nm at the temperature 625 K. The repeatability od the process is proved to be stable by employing the designed imprinting machine and process parameters.

Topic Category 工學院 > 動力機械工程學系
工程學 > 機械工程
Reference
  1. [1] C K Sung, ”Fabrication of Subwavelength Metallic Structures by Using A Metal Direct Imprinting Process,” National Tsing Hua
    連結:
  2. University, 2007
    連結:
  3. “Nanoimprint lithography,” J. Vac. Sci. Technol. B14(6), 1996
    連結:
  4. Wilson, “Step and Flash Imprint Lithography: A New Approach to
    連結:
  5. Imprint of Nanostructures in Silicon,” Nature, Vol. 417, 2002
    連結:
  6. Glass Surface by Imprint Lithography,” 2003
    連結:
  7. [7] Takehiko Yamaguchi, Kazuyuki Yao, Tomohiro Kanajugi,
    連結:
  8. ”Fabrication of Micro Optical Elements on Glass Surface by Imprint Lithography,” 2003
    連結:
  9. [8] Yasunori Saotome, Kenichi Imai, Narihito Sawanobori,
    連結:
  10. “Microformability of Optical Flasses for Precision Molding,” J. of
    連結:
  11. [9] Masaharu Takahashi, Kohichi Sugimoto and Ryutaro Maeda,
    連結:
  12. Fabricated by Focused Ion Beam Etching,” Japanese Journal of
    連結:
  13. Applied Physics, Vol. 44, No. 7B, 2005
    連結:
  14. [10] M.Cheng, S.H.Zhang, J.A.Wert, ”Finite Element Analysis of
    連結:
  15. Microimprinting of Bulk Metallic Glasses in Supercooled
    連結:
  16. Liquid Regime,” 2007
    連結:
  17. [11] Hiromichi Takebe,Makoto Kuwabara, Masaharu Komori, ”Imprinted Optical Pattern of Low-Softening Phosphate Glass,” 2007
    連結:
  18. [12] T. Mori, K. Hasegawa, T. Hatano, ”Surface-relief Gratings with High Spatial Frequency Fabricated Using Direct Glass Imprinting Process,” 2008
    連結:
  19. [13] Junji Nishii, “Nano-glass Imprinting Technology for Next Generation Optical Devices,” 2008
    連結:
  20. [14] Yasunori Saotome, Kazuo Itoh, Tao Zhang, ”Superplastic
    連結:
  21. Nanoforming of Pd-Based Amorphous Alloy,” 2000
    連結:
  22. [15] Yasunori Saotome, Kenichi Imai, Shigeo Shioda, Susumu Shimizu,
    連結:
  23. Metallic Glass and The Nanoforming of Three Dimensional Structure,” Intermetallics, Vol. 10, 2002, pp. 1241-1247
    連結:
  24. [18] Horst Scholze, “Glass-Nature, Structure and Properties,”
    連結:
  25. [19] William D. Callister, Jr, “Materials Science and Engineering an
    連結:
  26. [20] Pau Chang Lu, “Introduction to The Mechanics of Viscous Fluids”,
    連結:
  27. 1973 John D. Anderson, JR., “Computational Fluid Dynamics-The
    連結:
  28. [23] I. M. Smith, D.V. Griffiths, ”Programming The Finite Element Method,” Third Edition, 1998
    連結:
  29. [24] Yoshihiko Hirai, Masaki Fujiwara, Takahiro Okuno, Yoshio Tanaka,
    連結:
  30. “Study of the resist deformation in Nanoimprint lithography,” J.Vac., Sci. Technol. B, Vol. 19(6), 2001
    連結:
  31. [25] C. R. Lin, R. H. Chen and C. Hung, ”The Characterisation and
    連結:
  32. Finite-Element Analysis of a Polymer under Hot Pressing,” National
    連結:
  33. [26] Wen-Bin Young, “Analysis of the Nanoimprint Lithography with a
    連結:
  34. Viscous Model,” Microelectronic Engineering, Vol. 77, 2005, pp.
    連結:
  35. [27] Yu-Chung Tsaia, Chinghua Hunga, Jung-Chung Hung, ”Glass Material Model for The Forming Stage of The Glass Molding Process,” Journal of materials processing technology, 2008
    連結:
  36. [28]鄭志偉, ”MSC.Marc於熱壓性奈米壓印模擬之研究,” 國家高速網路與計算中心
    連結:
  37. [29] Yoshihiko Hirai, Takaaki Konishi, Takashi Yoshikawa, ”Simulation and Experimental Study of Polymer Deformation in Nanoimprint Lithography,” J. Vac. Sci. Technol, 2008
    連結:
  38. [30] 謝志偉, ”直接奈米壓印成型及摩擦效應之研究-分子動力學分析與實驗,” 國立清華大學博士論文, 2008
    連結:
  39. [31] Yasunori Saotome, Kenichi Imai, ”The Micro Nanoformability of
    連結:
  40. Zr-Based Amorphous Alloys in The Supercooled Liquid State and
    連結:
  41. [32] Babak Heidaru, Ivan Maximov, ”Nanoimprint Lithography at 6 in. Wafer Scale”, J.Vac. Sci. Technol. B,Vol. 18(6), 2000
    連結:
  42. [34] B. J. Choi, S.V. Sreenivassan, ”Design of Orientation Stages for Step and Flash Imprint Lithography”, 2001
    連結:
  43. [35] Hiroshi Hiroshima, Masanori Komuro, ”Step and Repeat Photo Nanoimprint System Using Active Orientation Head”, 2004
    連結:
  44. [2] Katustoshi Tanaka, “Status Quo Prospect of Ultraprecision
  45. Machining,” 溶接學會誌, Vol. 2, 2001
  46. [3] Stephen Y. Chou, Peter R. Krauss, and Preston J. Renstorm,
  47. [4] M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. Choi,
  48. M.Wedlake, T. Michaelson, S. V. Sreenivasan, J. Ekerdt, and C. G.
  49. High-Resolution Patterning”, 1999
  50. [5] Stephen Y. Chou, Chirs Keimel and Jian Gu, “Ultrafast and Direct
  51. [6] Y. Hirai, Kazuyuki Yao, K. Kanajugi, “Fine Pattern Fabrication on
  52. Materials Proc. Techno. Vol. 140, 2003, pp. 379-384
  53. “Nanoimprint of Glass Materials with Glassy Carbon Molds
  54. Tao Zhang, Akihisa Inoue, “The Micro Nanoformability of Pt-Based
  55. [16]陳貽瑞, 王建, ”基礎材料與新材料,” 中國天津大學出版社, 1993
  56. [17]千福熹, ”現代玻璃科學科技,” 上海科學技術出版社(上冊), 1988
  57. Springer-Verlag, 1990
  58. Introduction,” Wiley International Edition, 2003
  59. Basic with Application,” McGRAW-Hill International Editions, 1995
  60. [21]林昭仁, ”薄膜流技術,” 高立圖書有限公司, 2005
  61. [22]朱佳仁, ”工程流體力學,” 科技圖書, 2005
  62. Chiao-Tung University, Taiwan,2002
  63. 405-411
  64. Their Application to Micro Dies,” J. of Materials Proc. Technol
  65. [33] J.H.Chang, S Y. Screenivassan, ”Gas pressurize hot embossing for
  66. Transcription of micro feature”, 2003
Times Cited
  1. 方治偉(2011)。玻璃模造技術於微光學陣列元件之成形研究。交通大學機械工程系所學位論文。2011。1-103。