Title

硼氫化鈉與廢鋁罐之水解產氫機制與效率提升

Translated Titles

Synergistic effect of hydrogen generation from sodium borohydride and waste aluminum can

Authors

許立群

Key Words

產氫速率 ; 硼氫化鈉 ; 廢鋁罐 ; 酸催化劑 ; 酸鹼度 ; 燃料電池 ; hydrogen generation ; sodium borohydride ; waste aluminum can ; acid catalyst ; pH ; fuel cell

PublicationName

中原大學機械工程研究所學位論文

Volume or Term/Year and Month of Publication

2017年

Academic Degree Category

碩士

Advisor

何青原

Content Language

繁體中文

Chinese Abstract

本研究是利用硼氫化鈉水解後所產生之鹼性環境來水解廢鋁罐以提升硼氫化鈉產氫效率。在產氫過程中,硼氫化鈉的濃度、酸加速劑的濃度、環境溫度及溶液本身的酸鹼值將會影響硼氫化鈉水解產氫的產氫速率及產氫的總量。在硼氫化鈉水解產氫與鋁水解產氫的疊加效應中,鋁的大小與其組成成分亦是其疊加效應中,重要的實驗參數,同時於產氫過程中所產生出的水氣,亦被驗證其使燃料電池的惡化相關。將產氫後的鋁罐副產物,通過掃描式電子顯微鏡、X光能譜分析儀及X光繞射儀來驗證硼氫化鈉水解產氫與鋁水解產氫的疊加效應。實驗結果可得於室溫下,6 wt%的硼氫化鈉有最佳的產氫效果,硼氫化鈉產氫過程中的酸鹼度會因溫度的升高而提高,降低總產氫量,卻也提升了鋁的水解產氫效率;同時,加入酸加速劑,使硼氫化鈉的產氫效率大大提升,降低反應時間,也抑制了鋁水解產氫的效果。加入除溼系統後的氫氣,經由濕度感測器可測得相對濕度為18%,且燃料電池的功率,雖未達到使用工業純氫的電性,但相較於通入未除溼之氫氣,除溼氫氣在通入燃料電池後有更好的發電功率。

English Abstract

This study is about synergistic effect of hydrogen generation from sodium borohydride (NaBH4) in the presence of waste aluminum can , using deionization water as a reactant with acid catalyst. The concentrations of NaBH4, acid catalyst sodium bisulfate (NaHSO4) and solution pH, temperature were found to have great amount influences on the hydrogen generation rate and hydrogen gas volume of hydrolysis of NaBH4 solution. The particle of aluminum size and composition made a difference to synergistic effect and the water vapor within hydrogen also affected the power of the proton exchange membrane fuel cell(PEMFC). The solid byproducts from the wasted NaBH4 solution were characterized by X-ray diffraction(XRD), scanning electron microscope(SEM), energy dispersive X-ray spectrometer(EDX) in a mean time. The results show that the maximum hydrogen volume obtained was 6% wt in the ultrasonic tank at room temperature and NaBH4 hydrolysis cause the solution pH elevated by rising temperature , limited the hydrogen generation capacity, but increased the hydrolysis from aluminum can for a long time. The reaction time decreased while using acid solution and NaHSO4, but limited hydrogen generation from Al can. After dehumidification, the hydrogen had 18% relative humidity in proton exchange membrane fuel cell and the power were less then pure hydrogen source but better then un-dehumidification.

Topic Category 工學院 > 機械工程研究所
工程學 > 機械工程
Reference
  1. [1] T. Aramoto, F. Adurodija, Y. Nishiyama, T. Arita, A. Hanafusa, K. Omura, and A. Morita, “A new technique for large-area thin film CdS/CdTe solar cells,” Solar Energy Materials & Solar Cells, vol. 75, pp. 211-217, 2003.
    連結:
  2. [2] B. Das, S.P. McGinnis, and P. Sines, “High-efficiency solar cells based on semiconductor nanostructures,” Solar Energy Materials & Solar Cells, vol. 63, pp.117-123, 2000.
    連結:
  3. [3] Y. Liu, L. Ye, I. Benoit, X. Liu, Y. Cheng, G. Morel, and C. Fu, “Economic performance evaluation method for hydroelectric generating units,” Energy Conversion and Management, vol. 44, pp. 797-808, 2003.
    連結:
  4. [4] N.G. Voros, C.T. Kiranoudis, and Z.B. Maroulis, “Short-cut design of small hydroelectric plants,” Renewable Energy, vol. 19, pp. 545-563, 2000.
    連結:
  5. [5] L. Ntziachristos, C. Kouridis, Z. Samaras, and K. Pattas, “A wind-power fuel-cell hybrid system study on the non-interconnected Aegean islands grid,” Renewable Energy, vol. 30, pp. 1471-1487, 2005.
    連結:
  6. [6] W. J. Yang and O. Aydin, “Wind energy-hydrogen storage hybrid power generation,” International Journal of Energy Research, vol. 25, pp. 449-463, 2001.
    連結:
  7. [7] M. Shiono, K. Suzuki, and S. Kiho, “An Experimental Study of the Characteristics of a Darrieus Turbine for Tidal Power Generation,” Electrical Engineering in Japan, vol. 132, no.3, 2000.
    連結:
  8. [8] J. S. Lee and S. H. Yoo, “Measuring the environmental costs of tidal power plant construction: A choice experiment study,” Energy Policy, vol. 37, pp. 5069-5074, 2009.
    連結:
  9. [9] U. Desideri and F. D. Maria, “Simulation code for design and off design performance prediction of geothermal power plants,” Energy Conversion & Management, vol. 41, pp. 61-76, 2000.
    連結:
  10. [10] G. Gokcen, H. K. Ozturk, and A. Hepbasli, “Overview of Kizildere Geothermal Power Plant in Turkey,” Energy Conversion and Management, vol. 45, pp. 83-98, 2004.
    連結:
  11. [11] R. J. Wai and R. Y. Duan, “High-Efficiency Power Conversion for Low Power Fuel Cell Generation System,” IEEE Transactions on Power Electronics, vol. 20, no. 4, 2005.
    連結:
  12. [12] L. Salemme, L. Menna, M. Simeone, and G. Volpicelli, “Energy efficiency of membrane-based fuel processors – PEM fuel cell systems,” International Journal of Hydrogen Energy, vol. 35, pp. 3712-3720, 2010.
    連結:
  13. [13] R. Retnamma, A. Q. Novais, and C.M. Rangel, “Kinetics of hydrolysis of sodium borohydride for hydrogen production in fuel cell applications: A review,” International Journal of Hydrogen Energy, vol. 36, pp. 9772-9790, 2011.
    連結:
  14. [14] C. A. Becker-Glad and W. E. Glad, “Acid acceleration of hydrogen generation using seawater as a reactant,” International Journal of Hydrogen Energy, vol. 41, pp. 17761-17770, 2016.
    連結:
  15. [15] Y.C. Zou, Y.M. Huang, X. Li, and H.L. Liu, “A durable ruthenium catalyst for the NaBH4 hydrolysis,” International Journal of Hydrogen Energy, vol. 36, pp. 4315-4322, 2011.
    連結:
  16. [16] O.V. Netskina, O.V. Komova, V.I. Simagina, G.V. Odegova, I.P. Prosvirin, and O.A. Bulavchenko, “Aqueous-alkaline NaBH4 solution: The influence of storage duration of solutions on reduction and activity of cobalt catalysts,” Renewable Energy, vol. 99, pp. 1073-1081, 2016.
    連結:
  17. [17] A. Yousef, R. M. Brooks, M.M. El-Halwany, M. Obaid, M. H. El-Newehy, S. S. Al-Deyab, and N. A.M. Barakat, “A novel and chemical stable Co-B nanoflakes-like structure supported over titanium dioxide nanofibers used as catalyst for hydrogen generation from ammonia borane complex,” International Journal of Hydrogen Energy, vol. 41, pp. 285-293, 2016.
    連結:
  18. [18] O. Sahin, D. Kilinc, and C. Saka, “Bimetallic CoeNi based complex catalyst for hydrogen production by catalytic hydrolysis of sodium borohydride with an alternative approach,” Journal of the Energy Institute, vol. 89, pp. 617-626, 2016.
    連結:
  19. [19] J. H. Sim and T. Kim, “Accelerated hydrolysis of solid-state NaBH4 by injecting NaHCO3 solution for hydrogen generation,” Applied Energy, vol. 160, pp. 999-1006, 2015.
    連結:
  20. [20] G.M. Arzac and A. Fernandez, “Hydrogen production through sodium borohydride ethanolysis,” International Journal of Hydrogen Energy, vol. 40, pp. 5326-5332, 2015.
    連結:
  21. [21] T. P. Bartkus, J. S. T’ien, and C.J. Sung, “A semi-global reaction rate model based on experimental data for the self-hydrolysis kinetics of aqueous sodium borohydride,” International Journal of Hydrogen Energy, vol. 38, pp. 4024-4033, 2013.
    連結:
  22. [22] J. Andrieux, U. B. Demirci, J. Hannauer, C. Gervais, C. Goutaudier, and P. Miele, “Spontaneous hydrolysis of sodium borohydride in harsh conditions,” International Journal of Hydrogen Energy, vol. 36, pp. 224-233, 2011.
    連結:
  23. [23] U.B. Demirci and F. Garin, “Ru-based bimetallic alloys for hydrogen generation by hydrolysis of sodium tetrahydroborate,” Journal of Alloys and Compounds, vol. 463, pp. 107-111, 2008.
    連結:
  24. [24] Y. Li, Q. Zhang, N. Zhang, L. Zhu, J. Zheng, and B. H. Chen, “Ru-RuO2/C as an efficient catalyst for the sodium borohydride hydrolysis to hydrogen,” International Journal of Hydrogen Energy, vol. 38, pp. 13360-13367, 2013.
    連結:
  25. [25] Z. Li, H. Li, L. Wang, T. Liu, T. Zhang, G. Wang, and G. Xie, “Hydrogen generation from catalytic hydrolysis of sodium borohydride solution using supported amorphous alloy catalysts (Ni-Co-P/γ-Al2O3),” International Journal of Hydrogen Energy, vol. 39, pp. 14935-14941, 2014.
    連結:
  26. [26] L. Wang, Z. Li, X. Liu, P. Zhang, and G. Xie, “Hydrogen generation from alkaline NaBH4 solution using electroless-deposited Co-W-P supported onγ-Al2O3,” International Journal of Hydrogen Energy, vol. 40, pp. 7965-7973, 2015.
    連結:
  27. [27] L. Wang, Z. Li, P. Zhang, G. Wang, and G. Xie, “Hydrogen generation from alkaline NaBH4 solution using Co-Ni-Mo-P/γ-Al2O3 catalysts,” International Journal of Hydrogen Energy, vol. 41, pp. 1468-1476, 2016.
    連結:
  28. [28] X. Shen, Q. Wang, Q. Wu, S. Guo, Z. Zhang, Z. Sun, B. Liu, Z. Wang, B. Zhao, and W. Ding, “CoB supported on Ag-activated TiO2 as a highly active catalyst for hydrolysis of alkaline NaBH4 solution,” Energy, vol. 90, pp. 464-474, 2015.
    連結:
  29. [29] Y. Wang, T. Li, S. Bai, K. Qi, Z. Cao, K. Zhang, S. Wu, and D. Wang, “Catalytic hydrolysis of sodium borohydride via nanostructured cobalt-boron catalysts,” International Journal of Hydrogen Energy, vol. 41, pp. 276-284,2016.
    連結:
  30. [30] E. Ozdemir, “Enhanced catalytic activity of Co-B/glassy carbon and Co-B/graphite catalysts for hydrolysis of sodium borohydride,” International Journal of Hydrogen Energy, vol. 40, pp. 14045-14051, 2015.
    連結:
  31. [31] E. Czech and T. Troczynski, “Hydrogen generation through massive corrosion of deformed aluminum in water,” International Journal of Hydrogen Energy, vol. 35, pp. 1029-1037, 2010.
    連結:
  32. [32] S. Liu, M. Q. Fan, C. Wang, Y. X. Huang, D. Chen, L. Q. Bai, and Kang-ying Shu, “Hydrogen generation by hydrolysis of Al-Li-Bi-NaCl,” International Journal of Hydrogen Energy, vol. 37, pp. 1014-1020, 2012.
    連結:
  33. [33] X. N. Huang, C. J. Lv, Y. Wang, H. Y. Shen, D. Chen, and Y. X. Huang, “Hydrogen generation from hydrolysis of aluminum/graphite composites with a core-shell structure,” International Journal of Hydrogen Energy, vol.37, pp. 7457-7463, 2012.
    連結:
  34. [34] B. Alinejad and K. Mahmoodi, “A novel method for generating hydrogen by hydrolysis of highly activated aluminum nanoparticles in pure water,” International Journal of Hydrogen Energy, vol. 34, pp. 7934-7938, 2009.
    連結:
  35. [35] Y. Jia, J. Shen, H. Meng, Y. Dong, Y. Chai, and N. Wang, “Hydrogen generation using a ball-milled Al/Ni/NaCl mixture,” Journal of Alloys and Compounds, vol. 588, pp. 259-264, 2014.
    連結:
  36. [36] K. S. Eom, J. Y. Kwon, M. J. Kim, and H. S. Kwon, “Design of Al–Fe alloys for fast on-board hydrogen production from hydrolysis,” Journal of Materials Chemistry, vol. 21, pp. 13047, 2011.
    連結:
  37. [37] H. X. Meng, N. Wang, Y. M. Dong, Z. L. Jia, L. J. Gao, and Y. J. Chai, “Influence of M-B (M = Fe, Co, Ni) on aluminum-water reaction,” Journal of Power Sources, vol. 268, pp. 550-556, 2014.
    連結:
  38. [38] H. Zhang, Y. Sun, F. He, X. Yu, and Z. Zhao, “Preparation and characterization of activated aluminum powder by magnetic grinding method for hydrogen generation,” International Journal of Energy Research, vol. 38, pp. 1016-1023, 2014.
    連結:
  39. [39] C. Y. Ho and C. H. Huang, “Enhancement of hydrogen generation using waste aluminum cans hydrolysis in low alkaline de-ionized water,” International Journal of Hydrogen Energy, vol. 41, pp. 3741-3747, 2016.
    連結:
  40. [40] J. Macanás, L. Soler, A. M. Candela, M. Muñoz, and J. Casado, “Hydrogen generation by aluminum corrosion in aqueous alkaline solutions of inorganic promoters: The AlHidrox process,” Energy, vol. 36, pp. 2493-2501, 2011.
    連結:
  41. [41] W. Yu, B. Yang, F. Zhu, W. Jiang, Q. Yu, and B. Xu, “Investigation of chlorination process in aluminum production by carbothermic-chlorination reduction of Al2O3 under vacuum,” Vacuum, vol.86, pp. 1113-1117, 2012.
    連結:
  42. [42] M. X. Sun, D. Z. Guo, Y. J. Xing, and G. M. Zhang, “Visible laser induced positive ion emissions from NaCl nanoparticles prepared by droplet rapid drying,” Applied Surface Science, vol. 258, pp. 8758-8763, 2012.
    連結:
  43. [43] V. Kamavaram, D. Mantha, and R.G. Reddy, “Recycling of aluminum metal matrix composite using ionic liquids: Effect of process variables on current efficiency and deposit characteristics,” Electrochimica Acta, vol. 50, pp. 3286-3295, 2005.
    連結:
  44. [44] W. S. Jung and S. K. Ahn, “Synthesis of aluminium nitride by the reaction of aluminium sulfide with ammonia,” Materials Letters, vol. 43, pp. 53-56, 2000.
    連結:
  45. [45] M. Ipek, S. Zeytin, and C. Bindal, “Effect of ZrO2 on phase transformation of Al2O3,” Ceramics International, vol. 36, pp. 1159-1163, 2010.
    連結: