Title

用於氫氣純化之ZIF-8/polysulfone複合薄膜新製備方法之研究

Translated Titles

A novel method for the preparation of ZIF-8/polysulfone composite membranes for H2 purification

Authors

田棋合

Key Words

ZIF-8/polysulfone複合薄膜新製備方法 ; A novel method for the preparation of ZIF-8/polysulfone composite membranes

PublicationName

中原大學化學工程研究所學位論文

Volume or Term/Year and Month of Publication

2017年

Academic Degree Category

碩士

Advisor

賴君義;胡蒨傑

Content Language

繁體中文

Chinese Abstract

氫氣(H2)的取得通常是藉由水煤氣轉化反應而來,而反應過程中會伴隨氮氣(N2)、二氧化碳(CO2)和甲烷(CH4)的生成,因此如何從混合氣中分離出氫氣對氫氣純化十分重要。氫氣的純化必須開發高性能氣體分離程序,以減少能源消耗和環境影響,有機金屬骨架(MOFs)其孔洞大小(window size)易於調控且具有選擇性吸附氣體能力,近十年來一直被學者應用於氣體分離與儲存的研究。有機金屬骨架薄膜之製備過程非常繁瑣耗時,我們若能簡化有機金屬骨架薄膜的製作方法,將可大幅提升有機金屬骨架薄膜的實用可行性,有鑑於此,本研究開發出和傳統長晶製作混合基質薄膜完全不同的創新方法,新方法可藉由簡單的製程製備出與傳統製膜方法性能相同的有機金屬骨架/高分子複合薄膜。 本研究使用壓濾方式製備ZIF-8/PSF複合薄膜,藉由添加聚多巴胺(PDA)增加ZIF-8顆粒間的黏著性,再利用氧化石墨烯(GO)填補ZIF-8顆粒間隙中的孔洞,最後以稀薄Pebax溶液修補剩餘缺陷。FE-SEM、DLS、PMI和氣體透過測試被用於鑑定薄膜性能,ZIF-8/PSF複合薄膜氫氣與氮氣選擇比(αH2/N2)由6.17(Pebax/ZiF-8/PSF)提升至15.11(Pebax/GO/PDA/ZIF-8/PSF),氫氣(H2)通量仍保有1000GPU。

English Abstract

Hydrogen production usually uses water–gas shift reaction. The product stream contains contaminants such as nitrogen, carbon dioxide, and methane. Therefore, how to separation the hydrogen from contaminants is quite important in hydrogen purification. For hydrogen purification, it is imperative to develop high-performing gas separation membranes in order to reduce energy consumption and environmental impacts. Metal-organic framework (MOFs) materials show variety aperture size and gas adsorption ability, therefore MOFs have been used for gas separation over the last decades. Metal-organic membrane needs to longer time to prepare, finding a simpler process to prepare the MOF membranes will be more practical. In this study, we used a new method different from in situ growth and mixed-matrix membranes. The new method is easier to fabricate the membrane with similar performance as the in situ growth method. In this work, pressure-filtration deposition method used to deposit ZIF-8 nanoparticles on polysulfone (PSF) substrate membrane and added polydopamine increasing ZIF-8 particle adhesion, next put graphite oxide (GO), in order to make graphite oxide (GO) into ZIF-8 particle gap, finally, a very dilute polymer solution used to seal the defects between the ZIF-8 particles. FE-SEM、DLS、PMI and bubble flowmeter were used to identify the composited membrane. The gas permeance of hydrogen kept 1000 GPU and the selectivity of hydrogen with nitrogen increased from 6.17 (Pebax/ZIF-8/PSF) to 15.11 (Pebax/GO/PDA/ZIF-8/PSF).

Topic Category 工學院 > 化學工程研究所
工程學 > 化學工業
Reference
  1. [1] S. Mamun, H.F. Svendsen, K.A. Hoff, O. Juliussen, Selection of new absorbents for carbon dioxide capture, Energy Conversion and Management, 48 (2007) 251-258.
    連結:
  2. [2] Y. Liu, L. Zhang, S. Watanasiri, Representing vapor− liquid equilibrium for an aqueous MEA− CO2 system using the electrolyte nonrandom-two-liquid model, Industrial & Engineering Chemistry Research, 38 (1999) 2080-2090.
    連結:
  3. [3] R.W. Baker, Future directions of membrane gas separation technology, Industrial & Engineering Chemistry Research, 41 (2002) 1393-1411.
    連結:
  4. [4] L. Yang, J. Fang, N. Meichin, K. Tanaka, H. Kita, K. Okamoto, Gas permeation properties of thianthrene-5, 5, 10, 10-tetraoxide-containing polyimides, Polymer, 42 (2001) 2021-2029.
    連結:
  5. [5] Y. Shida, T. Sakaguchi, M. Shiotsuki, F. Sanda, B.D. Freeman, T. Masuda, Synthesis and properties of membranes of poly (diphenylacetylenes) having fluorines and hydroxyl groups, Macromolecules, 39 (2006) 569-574.
    連結:
  6. [6] L. Wang, Y. Cao, M. Zhou, S.J. Zhou, Q. Yuan, Novel copolyimide membranes for gas separation, Journal of Membrane Science, 305 (2007) 338-346.
    連結:
  7. [7] G. Xu, F.F. Liang, Y.P. Yang, Y. Hu, K. Zhang, W.Y. Liu, An improved CO2 separation and purification system based on cryogenic separation and distillation theory, Energies, 7 (2014) 3484-3502.
    連結:
  8. [8] M.A. Gadalla, Z. Olujic, P.J. Jansens, M. Jobson, R. Smith, Reducing CO2 emissions and energy consumption of heat-integrated distillation systems, Environmental Science & Technology, 39 (2005) 6860-6870.
    連結:
  9. [9] H.G. Wood, C.H. Werkman, The utilisation of CO2 in the dissimilation of glycerol by the propionic acid bacteria, Biochemical Journal, 30 (1936) 48-49.
    連結:
  10. [10] L.M. Robeson, The upper bound revisited, Journal of Membrane Science, 320 (2008) 390-400.
    連結:
  11. [11] L.M. Robeson, Correlation of separation factor versus permeability for polymeric membranes, Journal of Membrane Science, 62 (1991) 165-185.
    連結:
  12. [12] L. Robeson, W. Burgoyne, M. Langsam, A. Savoca, C. Tien, High performance polymers for membrane separation, Polymer, 35 (1994) 4970-4978.
    連結:
  13. [13] F. Hamad, T. Matsuura, Performance of gas separation membranes made from sulfonated brominated high molecular weight poly (2, 4-dimethyl-l, 6-phenyIene oxide), Journal of Membrane Science, 253 (2005) 183-189.
    連結:
  14. [14] M. Teraguchi, T. Masuda, Poly (diphenylacetylene) membranes with high gas permeability and remarkable chiral memory, Macromolecules, 35 (2002) 1149-1151.
    連結:
  15. [15] P.M. Budd, K.J. Msayib, C.E. Tattershall, B.S. Ghanem, K.J. Reynolds, N.B. McKeown, D. Fritsch, Gas separation membranes from polymers of intrinsic microporosity, Journal of Membrane Science, 251 (2005) 263-269.
    連結:
  16. [16] K. Tanaka, M.N. Islam, M. Kido, H. Kita, K.I. Okamoto, Gas permeation and separation properties of sulfonated polyimide membranes, Polymer, 47 (2006) 4370-4377.
    連結:
  17. [17] M. Macchione, J.C. Jansen, G. De Luca, E. Tocci, M. Longeri, E. Drioli, Experimental analysis and simulation of the gas transport in dense Hyflon® AD60X membranes: Influence of residual solvent, Polymer, 48 (2007) 2619-2635.
    連結:
  18. [18] L. Toy, K. Nagai, B. Freeman, I. Pinnau, Z. He, T. Masuda, M. Teraguchi, Y.P. Yampolskii, Pure-gas and vapor permeation and sorption properties of poly [1-phenyl-2-[p-(trimethylsilyl) phenyl] acetylene](PTMSDPA), Macromolecules, 33 (2000) 2516-2524.
    連結:
  19. [19] B. Freeman, Y. Yampolskii, I. Pinnau, Materials science of membranes for gas and vapor separation, John Wiley & Sons, 2006.
    連結:
  20. [20] J.C. Jansen, M. Macchione, E. Drioli, On the unusual solvent retention and the effect on the gas transport in perfluorinated hyflon AD® membranes, Journal of Membrane Science, 287 (2007) 132-137.
    連結:
  21. [21] C.J. Orme, M.K. Harrup, T.A. Luther, R.P. Lash, K.S. Houston, D.H. Weinkauf, F.F. Stewart, Characterization of gas transport in selected rubbery amorphous polyphosphazene membranes, Journal of Membrane Science, 186 (2001) 249-256.
    連結:
  22. [22] U. Senthilkumar, B. Reddy, Polysiloxanes with pendent bulky groups having amino-hydroxy functionality: Structure–permeability correlation, Journal of Membrane Science, 292 (2007) 72-79.
    連結:
  23. [23] H.B.T. Jeazet, C. Staudt, C. Janiak, Metal-organic frameworks in mixed-matrix membranes for gas separation, Dalton Transactions, 41 (2012) 14003-14027.
    連結:
  24. [24] K.S. Park, Z. Ni, A.P. Côté, J.Y. Choi, R. Huang, F.J. Uribe-Romo, H.K. Chae, M. O’Keeffe, O.M. Yaghi, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks, Proceedings of the National Academy of Sciences, 103 (2006) 10186-10191.
    連結:
  25. [25] X. Guo, G. Zhu, Z. Li, F. Sun, Z. Yang, S. Qiu, A lanthanide metal–organic framework with high thermal stability and available Lewis-acid metal sites, Chemical Communications, (2006) 3172-3174.
    連結:
  26. [26] Y. Liu, G. Zeng, Y. Pan, Z. Lai, Synthesis of highly c-oriented ZIF-69 membranes by secondary growth and their gas permeation properties, Journal of Membrane Science, 379 (2011) 46-51.
    連結:
  27. [27] A. Phan, C.J. Doonan, F.J. Uribe-Romo, C.B. Knobler, M. O’keeffe, O.M. Yaghi, Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks, Chemical Research. 43 (2010) 58-67.
    連結:
  28. [28] H. Bux, F. Liang, Y. Li, J. Cravillon, M. Wiebcke, J. Caro, Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis, Journal of the American Chemical Society, 131 (2009) 16000-16001.
    連結:
  29. [29] Y. Li, F. Liang, H. Bux, W. Yang, J. Caro, Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation, Journal of Membrane Science, 354 (2010) 48-54.
    連結:
  30. [30] E.E. McLeary, J.C. Jansen, F. Kapteijn, Zeolite based films, Membranes and membrane reactors: Progress and prospects, Microporous and Mesoporous Materials, 90 (2006) 198-220.
    連結:
  31. [31] A. Huang, H. Bux, F. Steinbach, J. Caro, Molecular‐sieve membrane with hydrogen permselectivity: ZIF‐22 in LTA topology prepared with 3‐aminopropyltriethoxysilane as covalent linker, Angewandte Chemie, 122 (2010) 5078-5081.
    連結:
  32. [32] H. Bux, A. Feldhoff, J. Cravillon, M. Wiebcke, Y.-S. Li, J. Caro, Oriented zeolitic imidazolate framework-8 membrane with sharp H2/C3H8 molecular sieve separation, Chemistry of Materials, 23 (2011) 2262-2269.
    連結:
  33. [33] Y. Pan, T. Li, G. Lestari, Z. Lai, Effective separation of propylene/propane binary mixtures by ZIF-8 membranes, Journal of Membrane Science, 390 (2012) 93-98.
    連結:
  34. [34] D. Liu, X. Ma, H. Xi, Y. Lin, Gas transport properties and propylene/propane separation characteristics of ZIF-8 membranes, Journal of Membrane Science, 451 (2014) 85-93.
    連結:
  35. [36] J.L. Rowsell, O.M. Yaghi, Metal–organic frameworks: A new class of porous materials, Microporous and Mesoporous Materials, 73 (2004) 3-14.
    連結:
  36. [37] G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé, I. Margiolaki, A chromium terephthalate-based solid with unusually large pore volumes and surface area, Science, 309 (2005) 2040-2042.
    連結:
  37. [38] O.K. Farha, A.Ö. Yazaydın, I. Eryazici, C.D. Malliakas, B.G. Hauser, M.G. Kanatzidis, S.T. Nguyen, R.Q. Snurr, J.T. Hupp, De novo synthesis of a metal–organic framework material featuring ultrahigh surface area and gas storage capacities, Nature Chemistry, 2 (2010) 944-948.
    連結:
  38. [39] J.L. Rowsell, A.R. Millward, K.S. Park, O.M. Yaghi, Hydrogen sorption in functionalized metal− organic frameworks, Journal of the American Chemical Society, 126 (2004) 5666-5667.
    連結:
  39. [40] H.C. Zhou, J.R. Long, O.M. Yaghi, Introduction to metal–organic frameworks, in, ACS Symposium Series Publications, 2012.673-674
    連結:
  40. [41] A.R. Millward, O.M. Yaghi, Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature, Journal of the American Chemical Society, 127 (2005) 17998-17999.
    連結:
  41. [42] N.L. Rosi, J. Eckert, M. Eddaoudi, D.T. Vodak, J. Kim, M. O'keeffe, O.M. Yaghi, Hydrogen storage in microporous metal-organic frameworks, Science, 300 (2003) 1127-1129.
    連結:
  42. [43] E. Haldoupis, S. Nair, D.S. Sholl, Efficient calculation of diffusion limitations in Metal Organic Framework materials: A tool for identifying materials for kinetic separations, Journal of the American Chemical Society, 132 (2010) 7528-7539.
    連結:
  43. [45] A. Ramanan, M.S. Whittingham, How molecules turn into solids: The case of self-assembled metal-organic frameworks, Crystal Growth & Design, 6 (2006) 2419-2421.
    連結:
  44. [46] Trends in Atmospheric Carbon Dioxide, in, 2017.
    連結:
  45. [49] J.D. Figueroa, T. Fout, S. Plasynski, H. McIlvried, R.D. Srivastava, Advancesn in CO2 capture technology - The US department of energy's carbon sequestration program, International Journal of Greenhouse Gas Control, 2 (2008) 9-20.
    連結:
  46. [51] J.T. Yeh, H.W. Pennline, K.P. Resnik, Study of CO2 absorption and desorption in a packed column, Energy & Fuels, 15 (2001) 274-278.
    連結:
  47. [52] J.F. Brennecke, B.E. Gurkan, Ionic liquids for CO2 capture and emission reduction, The Journal of Physical Chemistry Letters, 1 (2010) 3459-3464.
    連結:
  48. [53] S.F. Zhao, P.M. Feron, L.Y. Deng, E. Favre, E. Chabanon, S.P. Yan, J.W. Hou, V. Chen, H. Qi, Status and progress of membrane contactors in post-combustion carbon capture: A state-of-the-art review of new developments, Journal of Membrane Science, 511 (2016) 180-206.
    連結:
  49. [55] S. Adhikari, S. Fernando, Hydrogen membrane separation techniques, Industrial & Engineering Chemistry Research, 45 (2006) 875-881.
    連結:
  50. [56] L. Shao, B.T. Low, T.S. Chung, A.R. Greenberg, Polymeric membranes for the hydrogen economy: Contemporary approaches and prospects for the future, Journal of Membrane Science, 327 (2009) 18-31.
    連結:
  51. [57] Y. Yoo, Z.P. Lai, H.K. Jeong, Fabrication of MOF-5 membranes using microwave-induced rapid seeding and solvothermal secondary growth, Microporous and Mesoporous Materials, 123 (2009) 100-106.
    連結:
  52. [58] Y.Y. Liu, Z.F. Ng, E.A. Khan, H.K. Jeong, C.B. Ching, Z.P. Lai, Synthesis of continuous MOF-5 membranes on porous alpha-alumina substrates, Microporous and Mesoporous Materials, 118 (2009) 296-301.
    連結:
  53. [59] Y.Y. Mao, J.W. Li, W. Cao, Y.L. Ying, L.W. Sun, X.S. Peng, Pressure-assisted synthesis of HKUST-1 thin film on polymer hollow fiber at room temperature toward gas separation, ACS Applied Materials & Interfaces, 6 (2014) 4473-4479.
    連結:
  54. [60] V.V. Guerrero, Y. Yoo, M.C. McCarthy, H.K. Jeong, HKUST-1 membranes on porous supports using secondary growth, Journal of Materials Chemistry, 20 (2010) 3938-3943.
    連結:
  55. [61] D. Nagaraju, D.G. Bhagat, R. Banerjee, U.K. Kharul, In situ growth of metal-organic frameworks on a porous ultrafiltration membrane for gas separation, Journal of Materials Chemistry A, 1 (2013) 8828-8835.
    連結:
  56. [62] Y. Go, J.H. Lee, I.K. Shamsudin, J. Kim, M.R. Othman, Microporous ZIF-7 membranes prepared by in-situ growth method for hydrogen separation, International Journal of Hydrogen Energy, 41 (2016) 10366-10373.
    連結:
  57. [63] Y.S. Li, F.Y. Liang, H. Bux, A. Feldhoff, W.S. Yang, J. Caro, Molecular sieve membrane: Supported metal-organic framework with high hydrogen selectivity, Angewandte Chemie-International Edition, 49 (2010) 548-551.
    連結:
  58. [64] E. Shamsaei, X.C. Lin, Z.X. Low, Z. Abbasi, Y.X. Hu, J.Z. Liu, H.T. Wang, Aqueous phase synthesis of ZIF-8 membrane with controllable location on an asymmetrically porous polymer substrate, ACS Applied Materials & Interfaces, 8 (2016) 6236-6244.
    連結:
  59. [65] G.S. Xu, J.F. Yao, K. Wang, L. He, P.A. Webley, C.S. Chen, H.T. Wang, Preparation of ZIF-8 membranes supported on ceramic hollow fibers from a concentrated synthesis gel, Journal of Membrane Science, 385 (2011) 187-193.
    連結:
  60. [66] M.C. McCarthy, V. Varela-Guerrero, G.V. Barnett, H.K. Jeong, Synthesis of Zeolitic Imidazolate Framework films and membranes with controlled microstructures, Langmuir, 26 (2010) 14636-14641.
    連結:
  61. [67] A.S. Huang, H. Bux, F. Steinbach, J. Caro, Molecular-Sieve membrane with hydrogen permselectivity: ZIF-22 in LTA topology prepared with 3-aminopropyltriethoxysilane as covalent linker, Angewandte Chemie-International Edition, 49 (2010) 4958-4961.
    連結:
  62. [68] Y.Y. Liu, E.P. Hu, E.A. Khan, Z.P. Lai, Synthesis and characterization of ZIF-69 membranes and separation for CO2/CO mixture, Journal of Membrane Science, 353 (2010) 36-40.
    連結:
  63. [69] A. Huang, W. Dou, J.Caro, Steam-stable zeolitic imidazolate framework ZIF-90 membrane with hydrogen selectivity through covalent functionalization, Journal of the American Chemical Society, 132 (2010) 15562-15564.
    連結:
  64. [70] A. Centrone, Y. Yang, S. Speakman, L. Bromberg, G.C. Rutledge, T.A. Hatton, Growth of metal-organic frameworks on polymer surfaces, Journal of the American Chemical Society, 132 (2010) 15687-15691.
    連結:
  65. [71] J.F. Yao, H.T. Wang, Zeolitic imidazolate framework composite membranes and thin films: Synthesis and applications, Chemical Society Reviews, 43 (2014) 4470-4493.
    連結:
  66. [72] M. Shah, H.T. Kwon, V. Tran, S. Sachdeva, H.K. Jeong, One step in situ synthesis of supported zeolitic imidazolate framework ZIF-8 membranes: Role of sodium formate, Microporous and Mesoporous Materials, 165 (2013) 63-69.
    連結:
  67. [73] A.S. Huang, Q. Liu, N.Y. Wang, J. Caro, Highly hydrogen permselective ZIF-8 membranes supported on polydopamine functionalized macroporous stainless-steel-nets, Journal of Materials Chemistry A, 2 (2014) 8246-8251.
    連結:
  68. [74] J.F. Yao, D.H. Dong, D. Li, L. He, G.S. Xu, H.T. Wang, Contra-diffusion synthesis of ZIF-8 films on a polymer substrate, Chemical Communications, 47 (2011) 2559-2561.
    連結:
  69. [75] K. Kida, K. Fujita, T. Shimada, S. Tanaka, Y. Miyake, Layer-by-layer aqueous rapid synthesis of ZIF-8 films on a reactive surface, Dalton Transactions, 42 (2013) 11128-11135.
    連結:
  70. [76] J.P. Nan, X.L. Dong, W.J. Wang, W.Q. Jin, N.P. Xu, Step-by-Step seeding procedure for preparing HKUST-1 membrane on porous alpha-alumina support, Langmuir, 27 (2011) 4309-4312.
    連結:
  71. [77] M. Salavati-Niasari, Synthesis and characterization of 18-and 20-membered hexaaza macrocycles containing pyridine manganese(II) complex nanoparticles dispersed within nanoreactors of zeolite-Y, Polyhedron, 28 (2009) 2321-2328.
    連結:
  72. [78] D. Paul, D. Kemp, The diffusion time lag in polymer membranes containing adsorptive fillers, in: Journal of Polymer Science: Polymer Symposia, Wiley Online Library, 1973, pp. 79-93.
    連結:
  73. [79] M. Rezakazemi, A.E. Amooghin, M.M. Montazer-Rahmati, A.F. Ismail, T. Matsuura, State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): An overview on current status and future directions, Progress in Polymer Science, 39 (2014) 817-861.
    連結:
  74. [80] R. Mahajan, W.J. Koros, Factors controlling successful formation of mixed-matrix gas separation materials, Industrial & Engineering Chemistry Research, 39 (2000) 2692-2696.
    連結:
  75. [35] H. Li, M. Eddaoudi, M. O'Keeffe, O.M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework, Nature, 402 (1999) 276-279.
  76. [44] K.B. Sharpless, Click chemistry: Discovery of new medicines, American Chemical Society, 241 (2011).
  77. https://www.esrl.noaa.gov/gmd/ccgg/trends/.
  78. [47] 溫室氣體與氣候變化, in, 2017.
  79. https://www.go-moea.tw/message_list.asp?cid=7
  80. [48] 行政院環保署溫室氣體排放統計, in, 2017.
  81. https://www.epa.gov.tw/ct.asp?xItem=10052&ctNode=31352&mp=epa
  82. [50] D. Chinn, D.Q. Vu, M.S. Driver, L.C. Boudreau, CO2 removal from gas using ionic liquid absorbents, in, US Patents, 2009.
  83. [54] M. Momirlan, T.N. Veziroglu, Current status of hydrogen energy, Renewable & Sustainable Energy Reviews, 6 (2002) 141-179.