Title

應用在金氧半電晶體之原子層沉積氧化鋁與砷化銦鎵、砷化銦介面之研究

Translated Titles

Study of Atomic Layer Deposition Al2O3/InGaAs, InAs Interfaces for MOSFET Application

DOI

10.6842/NCTU.2011.00765

Authors

金海光

Key Words

金氧半電晶體 ; 原子層 ; 沉積氧化鋁 ; 砷化銦鎵 ; 砷化銦 ; Atomic Layer Deposition ; Al2O3/InGaAs ; Interfaces ; MOSFET

PublicationName

交通大學材料科學與工程系所學位論文

Volume or Term/Year and Month of Publication

2011年

Academic Degree Category

博士

Advisor

張翼

Content Language

英文

Chinese Abstract

本論文集中研究減少InGaAs和InAs原生氧化層藉由使用數種表面處理和氣體退火條件去改善原子氣相沉積(ALD)Al2O3/InGaAs, Al2O3/InAs介面品質。三甲基鋁(TMA)製程及濕式化學溶液製程這兩種製程的結合與影響被提出。 使用乾式TMA來減少InGaAs, InAs表面的原生氧化層只有在第一次脈衝有效,接下來便無效。本研究中指出原生氧化層可以被顯著的移除,藉由使用濕式化學溶液製程,例如HCl或sulfide(硫化物)。然而,結合兩種方法(濕式化學溶液製程與TMA預先處理)對於InGaAs,InAs表面處理是最為有效的方式。 Al2O3/InAs MOSCAPs的電性指出對於改善Al2O3/InAs介面品質HCl加上TMA比起sulfide加上TMA是更有效果的。這個結果是由以下實驗觀察所得:ALD Al2O3 薄膜在200。C下沉積。300。C下沉積ALD Al2O3 薄膜再次驗證。同時本研究模擬Al2O3/InAs結構在低頻的C-V。結果顯示界面缺陷密度(Dit)分佈表現出 U 形在最小的Dit分佈位於InAs傳導帶最低處,i.e. 類施體陷阱在此能隙裡支配。這些類施體陷阱會顯著的減少藉由使用濕式化學溶液製程加上TMA預先處理。 藉由使用濕式化學溶液製程加上TMA預先處理和在純氫氣裡沉積後退火,對於Al2O3/In0.53Ga0.47As 界面品質有顯著提昇。使用ex-situ方法,強力的 C-V反轉行為第一次被觀察到在Al2O3/In0.53Ga0.47As MOSCAP。低Dit分佈可藉由模擬觀察到,同時模擬及電導法可確認最小Dit值 ~1011 eV-1cm-2。 Al2O3/InGaAs,InAs的電性表現不僅受與表面處理方法影響,同時也跟半導體本身性質有關。這些半導體參數例如:能隙、電子遷移率及Al2O3/InGaAs 結構的C-V、I-V本質濃度特性都被討論。

English Abstract

This dissertation concentrates on the study of the reduction of InGaAs and InAs native oxides by using several kinds of surface treatments and gas annealing conditions to improve the atomic layer deposition (ALD) Al2O3/InGaAs, Al2O3/InAs interfaces qualities. Effects of trimethyl aluminum (TMA) treatment, wet chemical surface treatments, and a combination of these two kinds of treatments are investigated. The use of dry TMA treatment for the reduction of InGaAs, InAs native oxides at surface was only effective in the first pulse and then it became effectless. The study shows that the native oxides could be significantly removed by using wet chemical solution treatments such as HCl or sulfide. However, the combination of wet chemical solution treatments plus TMA pretreatment is the most effective way for InGaAs, InAs surface treatment. Electrical characterization of Al2O3/InAs MOSCAPs showed that the HCl plus TMA treatment was more effective in the improvement of Al2O3/InAs interface quality than that of sulfide plus TMA treatment. This conclusion was observed for the samples which were deposited with ALD Al2O3 films at 200oC and was confirmed again for the samples deposited with ALD Al2O3 films at 300oC. Low-frequency C-V simulations were performed for the Al2O3/InAs structures and the extracted interface traps density Dit profiles present a U-shape with the minimum of the Dit profiles located around the InAs conduction band minimum, i.e. donor-like traps dominates inside the bandgap. These donor-like traps were significant reduced by using wet chemical plus TMA treatments. By using the chemical solution plus TMA treatment along with post deposition annealing in pure H2 gas, a significant improvement of Al2O3/In0.53Ga0.47As interface quality was obtained. A strong C-V inversion behavior was first time observed in Al2O3/In0.53Ga0.47As MOSCAP by using an ex-situ method. Low Dit profile extracted by simulation was observed and the minimum Dit value of ~1011 eV-1cm-2 was confirmed by both simulation and conductance method. The electrical characteristics of Al2O3/InGaAs, InAs not only depend on the surface treatment methods but also depend on the properties of semiconductors themselves. The effect of semiconductor parameters such as bandgap, electron mobility, and intrinsic concentration on the C-V, I-V characteristics of Al2O3/InGaAs structures are discussed.

Topic Category 工學院 > 材料科學與工程系所
工程學 > 工程學總論
Reference
  1. 2. [2] G. E. Moore, "Cramming more components onto integrated circuits," Electronics 38 (1965).
    連結:
  2. 5. [5] R. Jobertson, "High dielectric constant gate oxides for metal oxide Si transistors," Rep. Prog. Phys. 69, 327-396 (2006).
    連結:
  3. 6. [6] S. H. Lo, et al., "Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET's," IEEE Electron Device Lett. 18, 209-211 (1997).
    連結:
  4. 7. [7] R. Degraeve, N. Pangon, B. Kaczer, T. Nigam, G. Groeseneken, and A. Naem, "Temperature acceleration of oxide breakdown and its impact on ultra-thin gate oxide reliability," in VLSI Sym.Tech.Dig., 59-60 (1999).
    連結:
  5. 8. [8] J. H. Stathis and D. J. DiMaria, "Reliability projection for ultra-thin oxides at low voltage," in IEDM '98 Tech. Dig., 167-170 (1998).
    連結:
  6. 9. [9] D. K. Schroder and J. A. Babcock, "Negative bias temperature instability: Road to cross in deep submicron silicon semiconductor manufacturing," J. Appl. Phys. 94, 1-18 (2003).
    連結:
  7. 11. [11] G. D. Wilk, R. M. Wallace, and J. M. Anthony, "High-kappa gate dielectrics: Current status and materials properties considerations," J. Appl. Phys. 89, 5243-5275 (2001).
    連結:
  8. 12. [12] M. Houssa, L. Pantisano, L.-A° . Ragnarsson, R. Degraeve,T. Schram, G. Pourtois, S. De Gendt, G. Groeseneken, and M.M. Heyns, "Electrical properties of high-[kappa] gate dielectrics: Challenges, current issues, and possible solutions," Mat. Sci. and Eng.: R: Reports 51, 37-85 (2006).
    連結:
  9. 13. [13] J. Robertson, "Band offsets of wide-band-gap oxides and implications for future electronic devices," J. Vac. Sci. Technol. B 18, 1785-1791 (2000).
    連結:
  10. 15. [15] G. D. Wilk and R. M. Wallace, "Stable zirconium silicate gate dielectrics deposited directly on silicon," Appl. Phys. Lett. 76, 112-114 (2000).
    連結:
  11. 16. [16] W'en-Jie Qi, Renee Nieh, Byoung Hun Lee, Laegu Kang, Yongjoo Jeon, Katsunori Onishi, Tat Ngai, Sanjay Banerjee, and Jack C. Lee, "MOSCAP and MOSFET characteristics using ZrO2 gate dielectric deposited directly on Si," in IEDM '99 Tech. Dig., 145-148 (1999).
    連結:
  12. 20. [20] M. V. Fischetti, D. A. Neumayer, and E. A. Cartier, "Effective electron mobility in Si inversion layers in metal--oxide--semiconductor systems with a high-kappa insulator: The role of remote phonon scattering," J. Appl. Phys. 90, 4587-4608 (2001).
    連結:
  13. 21. [21] Robert Chau, Suman Datta, Mark Doczy, Brian Doyle, Jack Kavalieros, and Matthew Metz, "High-k/metal-gate stack and its MOSFET characteristics," IEEE Electron Device Lett. 25, 408-410 (2004).
    連結:
  14. 22. [22] S. Tyagi, C. Auth, I. Ban, P. Chang, R. Chau, T. Ghani, C-H. Jan, J. Kavalieros, K. Kuhn, J. Maiz, K. Mistry, and I. Post, "Future device scaling - Beyond traditional CMOS," in IEDST '09 Workshop, 1-4 (2009).
    連結:
  15. 25. [25] K. J. Kuhn, "Moore's Law Past 32nm: Future Challenges in Device Scaling," in IWCE '09 Workshop, 1-6 ( 2009).
    連結:
  16. 26. [26] H. Iwai, "Roadmap for 22 nm and beyond (Invited Paper)," Microelectron. Eng. 86, 1520-1528, (2009).
    連結:
  17. 28. [28] R. Chau, B. Doyle, S. Datta, J. Kavalieros, and K. Zhang, "Integrated nanoelectronics for the future," Nat. Mater. 6, 810-812 (2007).
    連結:
  18. 30. [30] M. Lundstrom, "Elementary scattering theory of the Si MOSFET," IEEE Electron Device Lett. 18, 361-363 (1997).
    連結:
  19. 32. [32] G. Dewey, M. K. Hudait, K. Lee, R. Pillarisetty, W. Rachmady, M. Radosavljevic, T. Rakshit, and R. Chau, "Carrier Transport in High-Mobility III-V Quantum-Well Transistors and Performance Impact for High-Speed Low-Power Logic Applications," IEEE Electron Device Lett. 29, 1094-1097 (2008).
    連結:
  20. 33. [33] G. Dewey, R. Kotlyar, R. Pillarisetty, M. Radosavljevic, T. Rakshit, H. Then, and R. Chau, "Logic Performance Evaluation and Transport Physics of Schottky-Gate III-V Compound Semiconductor Quantum Well Field Effect Transistors for Power Supply Voltages (VCC) Ranging from 0.5V to 1.0V," in IEDM' 09 Tech. Dig. 1-4 (2009).
    連結:
  21. 34. [34] R. Chau, S. Datta, and A. Majumdar, "Opportunities and Challenges of III-V Nanoelectronic for High-speed, Low-power Logic Applications," in IEEE CSICS Challen. Tech. Dig., 17 (2005).
    連結:
  22. 35. [35] S. Datta, T. Ashley, J. Brask, L. Buckle, M. Doczy, M. Emeny, D. Hayes, K. Hilton, R. Jefferies, T. Martin, T. J. Phillips, D. Wallis, P. Wilding, and R. Chau, "85nm gate length enhancement and depletion mode InSb quantum well transistors for ultra high speed and very low power digital logic applications," in IEDM' 05 Tech. Dig., 763-766 (2005).
    連結:
  23. 37. [37] J. L. Freeouf and J. M. Woodall, "Schottky barriers: An effective work function model," Appl. Phys. Lett. 39, 727-729 (1981).
    連結:
  24. 39. [39] M. Passlack, M. Hong, and J. P. Mannaerts, "Quasistatic and high frequency capacitance--voltage characterization of Ga2O3-GaAs structures fabricated by in situ molecular beam epitaxy," Appl. Phys. Lett. 68, 1099-1101 (1996).
    連結:
  25. 40. [40] M. Passlack, M. Hong, and J. P. Mannaerts, "C-V and G-V characterization of in-situ fabricated Ga2O3-GaAs interfaces for inversion/accumulation device and surface passivation applications," Solid-State Electron. 39, 1133-1136 (1996).
    連結:
  26. 42. [42] T. D. Lin, H. C. Chiu, P. Chang, L. T. Tung, C. P. Chen, M. Hong, J. Kwo, W. Tsai, and Y. C. Wang, "High-performance self-aligned inversion-channel In0.53Ga0.47As metal-oxide-semiconductor field-effect-transistor with Al2O3/Ga2O3(Gd2O3) as gate dielectrics," Appl. Phys. Lett. 93, 033516 (2008).
    連結:
  27. 43. [43] A. Callegari, P. D. Hoh, D. A. Buchanan, and D. Lacey, "Unpinned gallium oxide/GaAs interface by hydrogen and nitrogen surface plasma treatment," Appl. Phys. Lett. 54, 332-334 (1989).
    連結:
  28. 44. [44] H-L. Lu, L. Sun, S-J. Ding, M. Xu, D.W. Zhang, and L-K. Wang, "Characterization of atomic-layer-deposited Al2O3/GaAs interface improved by NH3 plasma pretreatment," Appl. Phys. Lett.89, 152910 (2006).
    連結:
  29. 45. [45] E. O’Connor, R. D. Long, K. Cherkaoui, K. K. Thomas, F. Chalvet, I. M. Povey, M. E. Pemble, P. K. Hurleya, B. Brennan, G. Hughes, and S. B. Newcomb "In situ H2S passivation of In0.53Ga0.47As/InP metal-oxide-semiconductor capacitors with atomic-layer deposited HfO2 gate dielectric," Appl. Phys. Lett. 92, 022902 (2008).
    連結:
  30. 46. [46] Yi Xuan, H-C. Lin, and P. D. Ye, "Simplified Surface Preparation for GaAs Passivation Using Atomic Layer-Deposited High-k Dielectrics," IEEE Trans. Electron Devices 54, 1811-1817 (2007).
    連結:
  31. 47. [47] Davood Shahrjerdi, Emanuel Tutuc, and Sanjay K. Banerjee, "Impact of surface chemical treatment on capacitance-voltage characteristics of GaAs metal-oxide-semiconductor capacitors with Al2O3 gate dielectric," Appl. Phys. Lett. 91, 063501 (2007).
    連結:
  32. 48. [48] Y. Q. Wu, M. Xu, R.S. Wang, O. Koybasi, and P. D. Ye, "High Performance Deep-Submicron Inversion-Mode InGaAs MOSFETs with maximum Gm exceeding 1.1 mS/μm: New HBr Pretreatment and Channel Engineering," in IEDM' 09 Tech. Dig. 1-4, (2009).
    連結:
  33. 49. [49] Y. Xuan, Y. Q. Wu, and P. D. Ye, "High-Performance Inversion-Type Enhancement-Mode InGaAs MOSFET With Maximum Drain Current Exceeding 1 A/mm," IEEE Electron Device Lett. 29, 294-296 (2008).
    連結:
  34. 50. [50] Hyoung-Sub Kim, Injo Ok, Manhong Zhang, Changhwan Choi, Tackhwi Lee, Feng Zhu, Gaurav Thareja, Lu Yu, and Jack C. Lee, "Ultrathin HfO2 (equivalent oxide thickness = 1.1 nm) metal-oxide-semiconductor capacitors on n-GaAs substrate with germanium passivation," Appl. Phys. Lett. 88, 252906 (2006).
    連結:
  35. 51. [51] Hyoung-Sub Kim, Injo Ok, Manhong Zhang, Tackhwi Lee, Feng Zhu, Lu Yu, and Jack C. Lee, "Metal gate-HfO2 metal-oxide-semiconductor capacitors on n-GaAs substrate with silicon/germanium interfacial passivation layers," Appl. Phys. Lett. 89, 222903 (2006).
    連結:
  36. 52. [52] C.L. Hinkle, M. Milojevic, E.M. Vogel, and R.M. Wallace, "Surface passivation and implications on high mobility channel performance (Invited Paper)," Microelectron. Eng. 86, 1544-1549 (2009).
    連結:
  37. 53. [53] Hock-Chun Chin, Ming Zhu, Ganesh S. Samudra, and Yee-Chia Yeoz, "n-Channel GaAs MOSFET with TaN/HfAlO Gate Stack Formed Using In Situ Vacuum Anneal and Silane Passivation," J. Electrochem. Soc. 155, H464-H468 (2008).
    連結:
  38. 54. [54] Hock-Chun Chin, Ming Zhu, Xinke Liu, Hock-Koon Lee, Luping Shi, Leng-Seow Tan, and Yee-Chia Yeo, "Silane–Ammonia Surface Passivation for Gallium Arsenide Surface-Channel n-MOSFETs" IEEE Electron Device Lett. 30, 110-112 (2009).
    連結:
  39. 55. [55] Hock-Chun Chin, Xinke Liu, Xiao Gong, and Yee-Chia Yeo, "Silane and Ammonia Surface Passivation Technology for High-Mobility In0.53Ga0.47As MOSFETs," IEEE Trans. Electron Devices 57, 973-979 (2010).
    連結:
  40. 56. [56] Hyoung-Sub Kim, I. Ok, M. Zhang, F. Zhu,1 S. Park, J. Yum, H. Zhao, Jack C. Lee, Prashant Majhi, N. Goel, W. Tsai, C. K. Gaspe, and M. B. Santos, "A study of metal-oxide-semiconductor capacitors on GaAs, In0.53Ga0.47As, InAs, and InSb substrates using a germanium interfacial passivation layer," Appl. Phys. Lett. 93, 062111 (2008).
    連結:
  41. 57. [57] Fei Gao, S. J. Lee, Rui Li, S. J. Whang, S. Balakumar, D. Z. Chi, Chia Ching Kean, S. Vicknesh, C. H. Tung, and D.-L. Kwong, "GaAs p- and n-MOS devices integrated with novel passivation (plasma nitridation and AlN-surface passivation) techniques and ALD-HfO2/TaN gate stack," in IEDM' 06. Tech. Dig., 1-4, (2006).
    連結:
  42. 58. [58] H. Hasegawa and M. Akazawa, "Surface passivation technology for III-V semiconductor nanoelectronics," Appl. Surf. Sci. 255, 628-632 (2008).
    連結:
  43. 60. [60] Y. Q. Wu, W. K. Wang, O. Koybasi, D. N. Zakharov, E. A. Stach, S. Nakahara, J. C. M. Hwang, and P. D. Ye, "0.8-V Supply Voltage Deep-Submicrometer Inversion-Mode In0.75Ga0.25As MOSFET" IEEE Electron Device Lett. 30, 700-702 (2009).
    連結:
  44. 61. [61] Chien-I Kuo, Heng-Tung Hsu, Edward Yi Chang, Chia-Yuan Chang, Yasuyuki Miyamoto, Suman Datta, Marko Radosavljevic, Guo-Wei Huang, and Ching-Ting Lee, "RF and Logic Performance Improvement of In0.7Ga0.3As/InAs/In0.7Ga0.3As Composite-Channel HEMT Using Gate-Sinking Technology," IEEE, Electron Device Lett. 29, 290-293 (2008).
    連結:
  45. 62. [62] D.-H. Kim and J. A. d. Alamo, "30-nm InAs Pseudomorphic HEMTs on an InP Substrate With a Current-Gain Cutoff Frequency of 628 GHz," IEEE, Electron Device Lett. 29, 830-833 (2008).
    連結:
  46. 76. [14] G. Brammertz, H.-C. Lin, K. Martens, D. Mercier, S. Sioncke, A. Delabie, W. E. Wang, M. Caymax, M. Meuris, and M. Heyns, "Capacitance-voltage characterization of GaAs-Al2O3 interfaces," Appl. Phys.Lett. 93, 183504 (2008).
    連結:
  47. 77. [15] Koen Martens, Chi On Chui, Guy Brammertz, Brice De Jaeger, Duygu Kuzum, Marc Meuris, Marc M. Heyns, Tejas Krishnamohan, Krishna Saraswat, Herman E. Maes, and Guido Groeseneken, "On the Correct Extraction of Interface Trap Density of MOS Devices With High-Mobility Semiconductor Substrates," IEEE Trans. Electron Devices 55, 547-556, (2008).
    連結:
  48. 79. [1] R. Chau, S. Datta, and A. majumdar, "Opportunities and Challenges of III-V Nanoelectronic for High-speed, Low-power Logic Applications," IEEE CSIC Syposium Technical Digest 17 (2005).
    連結:
  49. 80. [2] P. D. Ye, "Beyond Silicon's Elemental Logic," IEEE Spectrum 45, 42-47 (2008).
    連結:
  50. 81. [3] H.-S. Kim, I. Ok, M. Zhang, C. Choi, T. Lee, F. Zhu, G. Thareja, L. Yu, and J. C. Lee, "Ultrathin HfO2 (equivalent oxide thickness = 1.1 nm) metal-oxide-semiconductor capacitors on n-GaAs substrate with germanium passivation," Appl. Phys. Lett. 88, 252906 (2006).
    連結:
  51. 82. [4] H.-S. Kim, I. Ok, M. Zhang, T. Lee, F. Zhu, L. Yu, and J. C. Lee, "Metal gate-HfO2 metal-oxide-semiconductor capacitors on n-GaAs substrate with silicon/germanium interfacial passivation layers," Appl. Phys. Lett. 89, 222903 (2006).
    連結:
  52. 83. [5] S. Koveshnikov, W. Tsai, I. Ok, J. C. Lee, V. Torkanov, M. Yakimov, and S. Oktyabrsky, "Metal-oxide-semiconductor capacitors on GaAs with high-k gate oxide and amorphous silicon interface passivation layer," Appl. Phys. Lett. 88, 022106 (2006).
    連結:
  53. 84. [6] D. Shahrjerdi, E. Tutuc, and S. K. Banerjee, "Impact of surface chemical treatment on capacitance-voltage characteristics of GaAs metal-oxide-semiconductor capacitors with Al2O3 gate dielectric," Appl. Phys. Lett. 91, 063501 (2007).
    連結:
  54. 85. [7] M. M. Frank, G. D. Wilk, D. Starodub, T. Gustafsson, E. Garfunkel, Y. J. Chabal, J. Grazul, and D. A. Muller, "HfO2 and Al2O3 gate dielectrics on GaAs grown by atomic layer deposition," Appl. Phys. Lett. 86, 152904 (2005).
    連結:
  55. 87. [9] M. Milojevic, C. L. Hinkle, F. S. Aguirre-Tostado, H. C. Kim, E. M. Vogel, J. Kim, and R. M. Wallace, "Half-cycle atomic layer deposition reaction studies of Al2O3 on (NH4)2S passivated GaAs(100) surfaces," Appl. Phys. Lett. 93, 252905 (2008).
    連結:
  56. 88. [10] M. L. Huang, Y. C. Chang, C. H. Chang, Y. J. Lee, P. Chang, J. Kwo, T. B. Wu, and M. Hong, "Surface passivation of III-V compound semiconductors using atomic-layer-deposition-grown Al2O3," Appl. Phys. Lett. 87, 252104 (2005).
    連結:
  57. 89. [11] C. H. Chang, Y. K. Chiou, Y. C. Chang, K. Y. Lee, T. D. Lin, T. B. Wu, M. Hong, and J. Kwo, "Interfacial self-cleaning in atomic layer deposition of HfO2 gate dielectric on In0.15Ga0.85As," Appl. Phys. Lett. 89, 242911 (2006).
    連結:
  58. 90. [12] C. H. Hou, M. C. Chen, C. H. Chang, T. B. Wu, and C. D. Chiang, "Interfacial Cleaning Effects in Passivating InSb with Al2O3 by Atomic Layer Deposition," Electrochem. Solid-State. Lett. 11, D60-D63 (2008).
    連結:
  59. 91. [13] C. H. Hou, M. C. Chen, C. H. Chang, T. B. Wu, C. D. Chiang, and J. J. Luo, "Effects of Surface Treatments on Interfacial Self-Cleaning in Atomic Layer Deposition of Al2O3 on InSb," J. Electrochem. Soc. 155, G180-G183 (2008).
    連結:
  60. 92. [14] H.-S. Kim, I. Ok, M. Zhang, F. Zhu, S. Park, J. Yum, H. Zhao, J. C. Lee, P. Majhi, N. Goel, W. Tsai, C. K. Gaspe, and M. B. Santos, "A study of metal-oxide-semiconductor capacitors on GaAs, In0.53Ga0.47As, InAs, and InSb substrates using a germanium interfacial passivation layer," Appl. Phys. Lett. 93, 062111 (2008).
    連結:
  61. 93. [15] N. Li, E. S. Harmon, J. Hyland, D. B. Salzman, T. P. Ma, Y. Xuan, and P. D. Ye, "Properties of InAs metal-oxide-semiconductor structures with atomic-layer-deposited Al2O3 Dielectric," Appl. Phys. Lett. 92, 143507 (2008).
    連結:
  62. 95. [17] Y.-C. Wu, E. Y. Chang, Y.-C. Lin, C.-C. Kei, M. K. Hudait, M. Radosavljevic, Y.-Y. Wong, C.-T. Chang, J.-C. Huang, and S.-H. Tang, "Study of the inversion behaviors of Al2O3/InxGa1-xAs metal-oxide-semiconductor capacitors with different In contents," Solid-State. Electron. 54, 37-41 (2010).
    連結:
  63. 96. [18] D. Y. Petrovykh, J. M. Sullivan, and L. J. Whitman, "Quantification of discrete oxide and sulfur layers on sulfur-passivated InAs by XPS," Surf. Interface. Anal. 37, 989-997 (2005).
    連結:
  64. 97. [19] L. Geelhaar, R. A. Bartynski, F. Ren, M. Schnoes, and D. N. Buckley, "Photoluminescence and x-ray photoelectron spectroscopy study of S-passivated InGaAs(001)," J. Appl. Phys. 80, 3076-3082 (1996).
    連結:
  65. 98. [20] G. Hollinger, R. Skheyta-Kabbani, and M. Gendry, "Oxides on GaAs and InAs surfaces: An x-ray-photoelectron-spectroscopy study of reference compounds and thin oxide layers," Phys. Rev. B 49, 11159 (1994).
    連結:
  66. 99. [21] K. Martens, C. Chi On, G. Brammertz, B. De Jaeger, D. Kuzum, M. Meuris, M. Heyns, T. Krishnamohan, K. Saraswat, H. E. Maes, and G. Groeseneken, "On the Correct Extraction of Interface Trap Density of MOS Devices With High-Mobility Semiconductor Substrates," IEEE Trans. Electron Devices 55, 547-556 (2008).
    連結:
  67. 101. [23] S. M. Sze and K. K. Ng, "Sermiconductor Devices," John Wiley and Sons, Inc., 206, (2007).
    連結:
  68. 102. [24] V. V. Afanas'ev and A. Stesmans, "Energy band alignment at the (100)Ge/HfO2 interface," App. Phys. Lett. 84, 2319-2321 (2004).
    連結:
  69. 103. [25] G. K. Dalapati, T. Yi, L. Wei-Yip, M. Hoe Keat, and C. Byung Jin, "Electrical and Interfacial Characterization of Atomic Layer Deposited High-κ Gate Dielectrics on GaAs for Advanced CMOS Devices," IEEE Trans. Electron Devices 54, 1831-1837 (2007).
    連結:
  70. 104. [1] A. P. Kirk, M. Milojevic, J. Kim, and R. M. Wallacea, "An in situ examination of atomic layer deposited alumina/InAs(100) interfaces," Appl. Phys. Lett. 96, 202905 (2010).
    連結:
  71. 105. [2] R. Timm, A. Fian, M. Hjort, C. Thelander, E. Lind, J. N. Andersen, L.-E. Wernersson, and A. Mikkelsen, "Reduction of native oxides on InAs by atomic layer deposited Al2O3 and HfO2," Appl. Phys. Lett. 97, 132904 (2010).
    連結:
  72. 106. [3] Abigail Lubow, Sohrab Ismail-Beigi, and T. P. Ma, "Comparison of drive currents in metal-oxide-semiconductor field-effect transistors made of Si, Ge, GaAs, InGaAs, and InAs channels," Appl. Phys. Lett. 96, 122105 (2010).
    連結:
  73. 107. [4] Erik Lind, Yann-Michel Niquet, Hector Mera, and Lars-Erik Wernersson, "Accumulation capacitance of narrow band gap metal-oxide-semiconductor capacitors," Appl. Phys. Lett. 96, 233507 (2010).
    連結:
  74. 108. [5] Hai-Dang Trinh, Edward Yi Chang, Yuen-Yee Wong, Chih-Chieh Yu, Chia-Yuan Chang, Yueh-Chin Lin, Hong-Quan Nguyen, and Binh-Tinh Tran "Effects of Wet Chemical and Trimethyl Aluminum Treatments on the Interface Properties in Atomic Layer Deposition of Al2O3 on InAs," Jpn. J. Appl. Phys. 49, 111201 (2010).
    連結:
  75. 109. [6] Hyoung-Sub Kim, I. Ok, M. Zhang, F. Zhu, S. Park, J. Yum, H. Zhao, Jack C. Lee, Prashant Majhi, N. Goel, W. Tsai, C. K. Gaspe, and M. B. Santos, "A study of metal-oxide-semiconductor capacitors on GaAs, In0.53Ga0.47As, InAs, and InSb substrates using a germanium interfacial passivation layer," Appl. Phys. Lett. 93, 062111 (2008).
    連結:
  76. 112. [9] Ning Li, Eric S. Harmon, James Hyland, David B. Salzman, T. P. Ma, Yi Xuan, and P. D. Ye, "Properties of InAs metal-oxide-semiconductor structures with atomic-layer-deposited Al2O3 Dielectric," Appl. Phys. Lett. 92, 143507 (2008).
    連結:
  77. 113. [10] Hyunhyub Ko, Kuniharu Takei, Rehan Kapadia, Steven Chuang, Hui Fang, Paul W. Leu, Kartik Ganapathi, Elena Plis, Ha Sul Kim, Szu-Ying Chen, Morten Madsen, Alexandra C. Ford, Yu-Lun Chueh, Sanjay Krishna, Sayeef Salahuddin, and Ali Javey, "Ultrathin compound semiconductor on insulator layers for high-performance nanoscale transistors," Nature 468, 286-289 (2010).
    連結:
  78. 114. [11] M. Milojevic, C. L. Hinkle, F. S. Aguirre-Tostado, H. C. Kim, E. M. Vogel, J. Kim,nand R. M. Wallace, "Half-cycle atomic layer deposition reaction studies of Al2O3 on (NH4)2S passivated GaAs(100) surfaces," Appl. Phys. Lett. 93, 252905 (2008).
    連結:
  79. 115. [12] H. D. Trinh, E. Y. Chang, P. W. Wu, Y. Y. Wong, C. T. Chang, Y. F. Hsieh, C. C. Yu, H. Q. Nguyen, Y. C. Lin, K. L. Lin, and M. K. Hudait, "The influences of surface treatment and gas annealing conditions on the inversion behaviors of the atomic-layer-deposition Al2O3/n-In0.53Ga0.47As metal-oxide-semiconductor capacitor," Appl. Phys. Lett. 97, 042903 (2010).
    連結:
  80. 116. [13] G. Brammertz, H.-C. Lin, M. Caymax, M. Meuris, M. Heyns, and M. Passlack, "On the interface state density at In0.53Ga0.47As/oxide interfaces," Appl. Phys. Lett. 95, 202109 (2009).
    連結:
  81. 118. [15] Viktor Ariel-Altschul, Eliezer Finkman, and Gad Bahir, "Approximations for carrier density in nonparabolic semiconductors," IEEE Trans. Electron Devices 39, 1312-1316 (1992).
    連結:
  82. 119. [1] R. Chau, S. Datta, and A. majumdar, "Opportunities and Challenges of III-V Nanoelectronic for High-speed, Low-power Logic Applications," IEEE CSIC Syposium Technical Digest, 17 (2005).
    連結:
  83. 120. [2] S. Koveshnikov, N. Goel, P. Majhi, H. Wen, M. B. Santos, S. Oktyabrsky, V. Tokranov, R. Kambhampati, R. Moore, F. Zhu, J. Lee, and W. Tsai "In0.53Ga0.47As based metal oxide semiconductor capacitors with atomic layer deposition ZrO2 gate oxide demonstrating low gate leakage current and equivalent oxide thickness less than 1 nm," Appl. Phys. Lett. 92, 222904 (2008).
    連結:
  84. 121. [3] Y. Q. Wu, Student, W. K. Wang, O. Koybasi, D. N. Zakharov, E. A. Stach, S. Nakahara, J. C. M. Hwang, and P. D. Ye, "0.8-V Supply Voltage Deep-Submicrometer Inversion-Mode In0.75Ga0.25As MOSFET," IEEE Electron Device Lett. 30, 700-702 (2009).
    連結:
  85. 122. [4] G. Dewey, R. Kotlyar, R. Pillarisetty, M. Radosavljevic, T. Rakshit, H. Then, and R. Chau, "Logic Performance Evaluation and Transport Physics of Schottky-Gate III-V Compound Semiconductor Quantum Well Field Effect Transistors for Power Supply Voltages (VCC) Ranging from 0.5V to 1.0V," in IEDM' 09 Tech. Dig., 1-4 (2009).
    連結:
  86. 123. [5] C. L. Hinkle, M. Milojevic, E. M. Voge, and R. M. Wallace, "The significance of core-level electron binding energies on the proper analysis of InGaAs interfacial bonding," Appl. Phys. Lett. 95, 151905 (2009).
    連結:
  87. 124. [6] Han-Chung Lin, Wei-E. Wang, Guy Brammertz, Marc Meuris, and Marc Heyns, "Electrical study of sulfur passivated In0.53Ga0.47As MOS capacitor and transistor with ALD Al2O3 as gate insulator," Microelectron. Eng. 86, 1554-1557, (2009).
    連結:
  88. 125. [7] Roman Engel-Herbert, Yoontae Hwang, Joël Cagnon, and Susanne Stemmer, "Metal-oxide-semiconductor capacitors with ZrO2 dielectrics grown on In0.53Ga0.47As by chemical beam deposition," Appl. Phys. Lett. 95, 062908 (2009).
    連結:
  89. 126. [8] Byungha Shin, Joël Cagnon, Rathnait D. Long, Paul K. Hurley, Susanne Stemmer, and Paul C. McIntyre, "Unpinned Interface Between Al2O3 Gate Dielectric Layer Grown by Atomic Layer Deposition and Chemically Treated n-In0.53Ga0.47As(001)," Electrochem. Solid-State Lett. 12, G40-G43 (2009).
    連結:
  90. 127. [9] É. O’Connor, S. Monaghan, R. D. Long, A. O’Mahony, I. M. Povey, K. Cherkaoui, M. E. Pemble, G. Brammertz, M. Heyns, S. B. Newcomb, V. V. Afanas’ev, and P. K. Hurley, "Temperature and frequency dependent electrical characterization of HfO2/InxGa1-xAs interfaces using capacitance-voltage and conductance methods," Appl. Phys. Lett. 94, 102902 (2009).
    連結:
  91. 128. [10] E. O’Connor, R. D. Long, K. Cherkaoui, K. K. Thomas, F. Chalvet, I. M. Povey, M. E. Pemble, P. K. Hurley, B. Brennan, G. Hughes, and S. B. Newcomb,"In situ H2S passivation of In0.53Ga0.47As/InP metal-oxide-semiconductor capacitors with atomic-layer deposited HfO2 gate dielectric," Appl. Phys. Lett. 92, 022902 (2008).
    連結:
  92. 129. [11] Y. C. Chang, M. L. Huang, K. Y. Lee, Y. J. Lee, T. D. Lin, M. Hong, J. Kwo, T. S. Lay, C. C. Liao, and K. Y. Cheng, "Atomic-layer-deposited HfO2 on In0.53Ga0.47As: Passivation and energy-band parameters," Appl. Phys. Lett. 92, 072901 (2008).
    連結:
  93. 130. [12] R. D. Long, É. O’Connor, S. B. Newcomb, S. Monaghan, K. Cherkaoui, P. Casey, G. Hughes, K. K. Thomas, F. Chalvet, I. M. Povey, M. E. Pemble, and P. K. Hurley, "Structural analysis, elemental profiling, and electrical characterization of HfO2 thin films deposited on In0.53Ga0.47As surfaces by atomic layer deposition," J. Appl. Phys. 106, 084508 (2009).
    連結:
  94. 131. [13] N. Goel, P. Majhi, W. Tsai, M. Warusawithana, D. G. Schlom, M. B. Santos, J. S. Harris and Y. Nishi, "High-indium-content InGaAs metal-oxide-semiconductor capacitor with amorphous LaAlO3 gate dielectric," Appl. Phys. Lett. 91, 093509 (2007).
    連結:
  95. 132. [14] Yoontae Hwang, Mark A. Wistey, Joël Cagnon, Roman Engel-Herbert, and Susanne Stemmer, "Metal-oxide-semiconductor capacitors with erbium oxide dielectrics on In0.53Ga0.47As channels," Appl. Phys. Lett. 94, 122907 (2009).
    連結:
  96. 133. [15] M. Passlack, M. Hong, and J. P. Mannaerts, "C-V and G-V characterization of in-situ fabricated Ga2O3-GaAs interfaces for inversion/accumulation device and surface passivation applications," Solid-State Electron. 39, 133-1136 (1996).
    連結:
  97. 134. [16] M. Milojevic, C. L. Hinkle, F. S. Aguirre-Tostado, H. C. Kim, E. M. Vogel, J. Kim,nand R. M. Wallace, "Half-cycle atomic layer deposition reaction studies of Al2O3 on (NH4)2S passivated GaAs(100) surfaces," Appl. Phys. Lett. 93, 252905 (2008).
    連結:
  98. 135. [17] G. Brammertz, H.-C. Lin, M. Caymax, M. Meuris, M. Heyns, and M. Passlack, "On the interface state density at In0.53Ga0.47As/oxide interfaces," Appl. Phys. Lett. 95, 202109 (2009).
    連結:
  99. 137. [1] R. Chau, S. Datta, and A. majumdar, "Opportunities and Challenges of III-V Nanoelectronic for High-speed, Low-power Logic Applications," IEEE CSIC Syposium Technical Digest 17 (2005).
    連結:
  100. 138. [2] P. D. Ye, "Main determinants for III-V metal-oxide-semiconductor field-effect transistors (invited)," J. Vac. Sci. Technol. A 26, 697-704, (2008).
    連結:
  101. 139. [3] É. O’Connor, S. Monaghan, R. D. Long, A. O’Mahony, I. M. Povey, K. Cherkaoui, M. E. Pemble, G. Brammertz, M. Heyns, S. B. Newcomb, V. V. Afanas’ev, and P. K. Hurley, "Temperature and frequency dependent electrical characterization of HfO2/InxGa1-xAs interfaces using capacitance-voltage and conductance methods," Appl. Phys. Lett. 94, 102902 (2009).
    連結:
  102. 141. [5] H. D. Trinh, E. Y. Chang, P. W. Wu, Y. Y. Wong, C. T. Chang, Y. F. Hsieh, C. C. Yu, H. Q. Nguyen, Y. C. Lin, K. L. Lin, and M. K. Hudait, "The influences of surface treatment and gas annealing conditions on the inversion behaviors of the atomic-layer-deposition Al2O3/n-In0.53Ga0.47As metal-oxide-semiconductor capacitor," Appl. Phys. Lett. 97, 042903 (2010).
    連結:
  103. 142. [6] Hai-Dang Trinh, Edward Yi Chang, Yuen-Yee Wong, Chih-Chieh Yu, Chia-Yuan Chang, Yueh-Chin Lin, Hong-Quan Nguyen, and Binh-Tinh Tran "Effects of Wet Chemical and Trimethyl Aluminum Treatments on the Interface Properties in Atomic Layer Deposition of Al2O3 on InAs," Jpn. J. Appl. Phys. 49, 111201 (2010).
    連結:
  104. 144. [8] M. Milojevic, C. L. Hinkle, F. S. Aguirre-Tostado, H. C. Kim, E. M. Vogel, J. Kim, and R. M. Wallace, "Half-cycle atomic layer deposition reaction studies of Al2O3 on (NH4)2S passivated GaAs(100) surfaces," Appl. Phys. Lett. 93, 252905 (2008).
    連結:
  105. 145. [9] Y. C. Chang, M. L. Huang, K. Y. Lee, Y. J. Lee, T. D. Lin, M. Hong, J. Kwo, T. S. Lay, C. C. Liao, and K. Y. Cheng, "Atomic-layer-deposited HfO2 on In0.53Ga0.47As: Passivation and energy-band parameters," Appl. Phys. Lett. 92, 072901 (2008).
    連結:
  106. 149. [13] G. Brammertz, H.-C. Lin, M. Caymax, M. Meuris, M. Heyns, and M. Passlack, "On the interface state density at In0.53Ga0.47As/oxide interfaces," Appl. Phys. Lett. 95, 202109 (2009).
    連結:
  107. 150. [14] G. Brammertz, H.-C. Lin, K. Martens, D. Mercier, S. Sioncke, A. Delabie, W. E. Wang,M. Caymax, M. Meuris, and M. Heyns, "Capacitance-voltage characterization of GaAs–Al2O3 interfaces," Appl. Phys. Lett. 93, 183504 (2008).
    連結:
  108. 151. [15] Ning Li, Eric S. Harmon, James Hyland, David B. Salzman, T. P. Ma, Yi Xuan, and P. D. Ye, "Properties of InAs metal-oxide-semiconductor structures with atomic-layer-deposited Al2O3 Dielectric," Appl. Phys. Lett. 92, 143507 (2008).
    連結:
  109. 152. [16] K. Martens, C. Chi On, G. Brammertz, B. De Jaeger, D. Kuzum, M. Meuris, M. Heyns, T. Krishnamohan, K. Saraswat, H. E. Maes, and G. Groeseneken, "On the Correct Extraction of Interface Trap Density of MOS Devices With High-Mobility Semiconductor Substrates," IEEE Trans. Electron Devices 55, 547-556 (2008).
    連結:
  110. 153. [17] T. S. Lay, M. Hong, J. Kwo, J. P. Mannaerts, W. H. Hung, and D. J. Huang, "Energy-band parameters at the GaAs- and GaN-Ga2O3(Gd2O3) interfaces," Solid-State Electron. 45, 1679-1682 (2001).
    連結:
  111. 154. [18] M. L. Huang, Y. C. Chang, Y. H. Chang, T. D. Lin, J. Kwo, and M. Hong, "Energy-band parameters of atomic layer deposited Al2O3 and HfO2 on InxGa1-xAs," Appl. Phys. Lett. 94, 052106 (2009).
    連結:
  112. 155. [19] Davood Shahrjerdi,a Emanuel Tutuc, and Sanjay K. Banerjee, "Impact of surface chemical treatment on capacitance-voltage characteristics of GaAs metal-oxide-semiconductor capacitors with Al2O3 gate dielectric," Appl. Phys. Lett. 91, 063501 (2007).
    連結:
  113. 1. [1] Intel white paper, "Introducion to Intel's 32nm process technology," source: http://download.intel.com/pressroom/kits/32nm/westmere/Intel_32nm_overview.pdf
  114. 3. [3] Robert Chau, Mark Doczy, Brian Doyle, Suman Datta, Gilbert Dewey, Jack Kavalieros, Ben Jin, Matthew Metz, Amlan Majumdar, and Marko Radosavljević, "Advanced CMOS transistors in the nanotechnology era for high-performance, low-power logic applications," in ICSICT 2004, 26-30 (2004) .
  115. 4. [4] Source: http://www.intel.com/technology/mooreslaw/ and http://en.wikipedia.org/wiki /Transistor_count.
  116. 10. [10] M. Bohr, R. Chau, T. Ghani, and K. Mistry, "The high k solution," IEEE spectrum, 29-35 (2007).
  117. 14. [14] L. Manchanda, W. H. Lee, J. E. Bower, F. H. Baumann, W. L. BroIwn, C. J. Case, R. C. Keller, Y. 0. Kim, E. J. Laskowski, M. D. Morris, R. L. Opila, P. J. Silverman, T. W. Sorsch and G. R. Weber, "Gate quality doped high K films for CMOS beyond 100 nm: 3-10 nm Al2O3 with low leakage and low interface states," in IEDM '98 Tech. Dig., 605-608 (1998).
  118. 17. [17] Christopher C. Hobbs, Leonardo R. C. Fonseca, Andrey Knizhnik, Veeraraghavan Dhandapani, Srikanth B. Samavedam, William J. Taylor, John M. Grant, LuRae G. Dip, Dina H. Triyoso, Rama I. Hegde, David C. Gilmer, Ricardo Garcia, Darrell Roan, M. Luke Lovejoy, Raghaw S. Rai, Elizabeth A. Hebert, Hsing-Huang Tseng, Steven G. H. Anderson, Bruce E. White, and Philip J. Tobin, "Fermi-level pinning at the polysilicon/metal oxide interface-Part I," IEEE Trans. Electron Devices 51, 971-977 (2004).
  119. 18. [18] E.P. Gusev, D.A. Buchanan, E. Cartier, A. Kurnar, D. DiMaria, S. Guha, A. Callegari, S. Zafar, P.C. Jamison, D.A. Neumayer, M. Copel, M.A. Gribelyuk, H. Okom-Schmidt, C. D'Emic, P.Kozlowski, K. Chan, N. Bojarczuk, L-A. Ragnarsson, P. Ronsheim, K. Rim, R. J. Fleming, A. Mocuta, and A. Ajmera, "Ultrathin high-K gate stacks for advanced CMOS devices," in IEDM'01 Tech. Dig., 20.1.1-20.1.4 (2001).
  120. 19. [19] Jack C. Lee, H. J. Cho, C. S. Kang, S. Rhee, Y. H. Kim, R. Choi, C. Y. Kang, C. Choi, and M. Abkar, "High-k dielectrics and MOSFET characteristics," in IEDM '03 Tech. Dig., 4.4.1-4.4.4 (2003).
  121. 23. [23] K. Mistry, C. Allen, C. Auth, B. Beattie, D. Bergstrom, M. Bost, M. Brazier, M. Buehler, A. Cappellani, R. Chau, C.-H. Choi, G. Ding, K. Fischer, T. Ghani, R. Grover, W. Han, D. Hanken, M. Hattendorf, J. He, J. Hicks , R. Huessner, D. Ingerly, P. Jain, R. James, L. Jong, S. Joshi, C. Kenyon, K. Kuhn, K. Lee, H. Liu, J. Maiz, B. McIntyre, P. Moon, J. Neirynck, S. Pae, C. Parker, D. Parsons, C. Prasad, L. Pipes, M. Prince, P. Ranade, T. Reynolds, J. Sandford, L. Shifren, J. Sebastian, J. Seiple, D. Simon, S. Sivakumar, P. Smith, C. Thomas, T. Troeger, P. Vandervoorn, S. Williams, and K. Zawadzki, "A 45nm Logic Technology with High-k+Metal Gate Transistors, Strained Silicon, 9 Cu Interconnect Layers, 193nm Dry Patterning, and 100% Pb-free Packaging," in IEDM' 07 Tech. Dig., 247-250 (2007).
  122. 24. [24] S. Natarajan, M. Armstrong, M. Bost, R. Brain, M. Brazier, C-H Chang, V. Chikarmane, M. Childs, H. Deshpande, K. Dev, G. Ding, T. Ghani, O. Golonzka, W. Han, J. He, R. Heussner, R. James, I. Jin, C. Kenyon, S. Klopcic, S-H. Lee, M. Liu, S. Lodha, B. McFadden, A. Murthy, L. Neiberg, J. Neirynck, P. Packan, S. Pae, C. Parker, C. Pelto, L. Pipes, J. Sebastian, J. Seiple, B. Sell, S. Sivakumar, B. Song, K. Tone, T. Troeger, C. Weber, M. Yang, A. Yeoh, and K. Zhang, "A 32nm Logic Technology Featuring 2nd-Generation High-k + Metal-Gate Transistors, Enhanced Channel Strain and 0.171 m2 SRAM Cell Size in a 291Mb Array," in IEDM' 08 Tech. Dig., 1-3 (2008).
  123. 27. [27] K. Martens, "Electrical Charaterization and Modeling of Ge/III-V - Dielectric Interfaces," PhD Dissertation, IMEC, Belgium, 2009.
  124. 29. [29] Source: http://www.ioffe.ru/SVA/NSM/
  125. 31. [31] Serge Oktyabrsky, and Peide D. Ye, Editors "Fundamentals of III-V Semiconductor MOSFETs," Spring, ISBN 978-1-4419-1546-7, 199-204 (2010).
  126. 36. [36] M. Radosavljevic, T. Ashley, A. Andreev, S. D. Coomber, G. Dewey, M. T. Emeny, M. Fearn, D. G. Hayes, K. P. Hilton, M. K. Hudait, R. Jefferies, T. Martin, R. Pillarisetty, W. Rachmady, T. Rakshit, S. J. Smith, M. J. Uren, D. J. Wallis, P. J. Wilding, and R. Chau, "High-performance 40nm gate length InSb p-channel compressively strained quantum well field effect transistors for low-power (VCC=0.5V) logic applications," in IEDM' 08 Tech. Dig., 1-4 (2008).
  127. 38. [38] L. J. Brillson, M. L. Slade, R. E. Viturro, M. K. Kelly, N. Tache, G. Margaritondo, J. M. Woodall, P. D. Kirchner, G. D. Pettit, and S. L. Wright, "Absence of Fermi level pinning at metal-InxGa1 - xAs(100) interfaces," Appl. Phys. Lett. 48, 1458-1460 (1986).
  128. 41. [41] F. Ren, M. Hong, W. S. Hobson, J. M. Kuo, J. R. Lothian, J. P. Mannaerts, J. Kwo, S. N. G. Chu, Y. K. Chen and A. Y. Cho, "Demonstration of enhancement-mode p- and n-channel GaAs MOSFETS with Ga2O3(Gd2O3) As gate oxide," Solid-State Electron. 41, 751-1753 (1997).
  129. 59. [59] C. L. Hinkle, A. M. Sonnet, E. M. Vogel, S. McDonnell, G. J. Hughes, M. Milojevic, B. Lee, F. S. Aguirre-Tostado, K. J. Choi, H. C. Kim, J. Kim, and R. M. Wallace, "GaAs interfacial self-cleaning by atomic layer deposition," Appl. Phys. Lett. 92, 071901 (2008).
  130. 63. [1] T. Suntola and J. Antson, US Patent 4 058 430 (1977).
  131. 64. [2] M. Houssa, Editor, "High-k Gate Dielectrics," IOP Publishing Ltd, ISBN 0 7503 0906 7, 17-22 (2004).
  132. 65. [3] Marco Fanciulli, and Giovanna Scarel, Editors, "Rare Earth Oxide Thin Films," Springer, ISBN-10 3-540-35796-3, 15-17 (2007).
  133. 66. [4] Source: http://www.cambridgenanotech.com/
  134. 67. [5] H.R. Huff, and D.C. Gilmer, Editors, "High Dielectric Constant Materials, VLSI MOSFET Applications," Springer, ISBN 3-540-21081-4, 379-391 (2005).
  135. 68. [6] D. R. Vij, Editor, "Handbook of Applied Solid State Spectroscopy," Springer, ISBN-13: 978-0387-32497-5, 486-507 (2006).
  136. 69. [7] J. C. Vickerman, and Ian. S. Gilmore, Editors, "Surface analysis: the principal techniques," John Wiley and Sons Ltd, ISBN 978-0-470-01763-0, 47-109 (2009).
  137. 70. [8] Source: http://www.almaden.ibm.com/st/scientific_services/materials_analysis/xps/.
  138. 71. [9] Source: http://www.uksaf.org/software.html
  139. 72. [10] Source: http://www.unl.edu/CMRAcfem/."
  140. 73. [11] Source: http://cp.literature.agilent.com/litweb/pdf/5988-1025EN.pdf.
  141. 74. [12] D. K. Schroder, "Semiconductor Material and Device Characterization," John Wiley and Sons, Inc., ISBN-13: 978-0-471-73906-7,321-323 (2006).
  142. 75. [13] G. Brammertz, H. C. Lin, K. Martens, D. Mercier, C. Merckling, J. Penaud, C. Adelmann, S. Sioncke, W. E. Wang, M. Caymax, M. Meuris, and M. Heyns, "Capacitance--Voltage Characterization of GaAs--Oxide Interfaces," J. Electrochem. Soc. 155, H945-H950 (2008).
  143. 78. [16] Source: http://www.ioffe.ru/SVA/NSM/
  144. 86. [8] C. L. Hinkle, A. M. Sonnet, E. M. Vogel, S. McDonnell, G. J. Hughes, M. Milojevic, B. Lee, F. S. Aguirre-Tostado, K. J. Choi, H. C. Kim, J. Kim, and R. M. Wallace, "GaAs interfacial self-cleaning by atomic layer deposition," Appl. Phys. Lett. 92, 071901 (2008).
  145. 94. [16] D. Wheeler, L. E. Wernersson, L. Fröberg, C. Thelander, A. Mikkelsen, K. J. Weststrate, A. Sonnet, E. M. Vogel, and A. Seabaugh, "Deposition of HfO2 on InAs by atomic-layer deposition," Microelectron. Eng. 86, 1561-1563 (2009).
  146. 100. [22] D. K. Schroder, "Semiconductor Material and Device Characterization," John Wiley and Sons, Inc., ISBN-13: 978-0-471-73906-7, 321-323 (2006).
  147. 110. [7] D. Wheeler, L.-E. Wernersson, L. Fröberg, C. Thelander, A. Mikkelsen, K.-J. Weststrate, A. Sonnet, E.M. Vogel, and A. Seabaugh, "Deposition of HfO2 on InAs by atomic-layer deposition," Microelectron. Eng. 86, 1561-1563 (2009).
  148. 111. [8] Yun-Chi Wua, Edward Yi Chang, Yueh-Chin Lin, Chi-Chung Kei, Mantu K. Hudait, Marko Radosavljevic, Yuen-Yee Wong, Chia-Ta Chang, Jui-Chien Huang, and Shih-Hsuan Tang, "Study of the inversion behaviors of Al2O3/InxGa1-xAs metal-oxide-semiconductor capacitors with different In contents," Solid-State Electron. 54, 37-41 (2010).
  149. 117. [14] Johnny C. Ho, Alexandra C. Ford, Yu-Lun Chueh, Paul W. Leu, Onur Ergen, Kuniharu Takei, Gregory Smith, Prashant Majhi, Joseph Bennett, and Ali Javey, "Nanoscale doping of InAs via sulfur monolayers," Appl. Phys. Lett. 95, 072108 (2009).
  150. 136. [18] D. K. Schroder, "Semiconductor Material and Device Characterization," John Wiley and Sons, Inc., ISBN-13: 978-0-471-73906-7, 321-323 (2006).
  151. 140. [4] Source: http://www.ioffe.ru/SVA/NSM/.
  152. 143. [7] C. L. Hinkle, A. M. Sonnet, E. M. Vogel, S. McDonnell, G. J. Hughes, M. Milojevic, B. Lee, F. S. Aguirre-Tostado, K. J. Choi, H. C. Kim, J. Kim, and R. M. Wallace, "GaAs interfacial self-cleaning by atomic layer deposition," Appl. Phys. Lett. 92, 071901 (2008).
  153. 146. [10] E. H. Nicollian and J. R. Brews, "MOS Physics and Technology," John Wiley and Sons, ISBN 0-471-08500-6, 139 (1982).
  154. 147. [11] S. M. Sze and K. K. Ng, "Physics of Semiconductor Devices," John Wiley & Sons, ISBN-I 3: 978-0-47 1-1 4323-9, 19-20 (2007).
  155. 148. [12] Serge Oktyabrsky, and Peide D. Ye, Editors "Fundamentals of III-V Semiconductor MOSFETs," Spring, ISBN 978-1-4419-1546-7, 178-181 (2010).