Title

運用影像資料進行混合車流的安全評估方式

Translated Titles

Safety Evaluation for Mixed Traffic Using Video Based Data

Authors

廖家慧

Key Words

交通衝擊 ; 事故指標法 ; 混合車流 ; 安全績效函數 ; traffic conflict ; crash surrogate measure ; time-to-collision ; mixed traffic ; Safety Performance Function

PublicationName

交通大學運輸與物流管理學系學位論文

Volume or Term/Year and Month of Publication

2017年

Academic Degree Category

碩士

Advisor

黃家耀

Content Language

英文

Chinese Abstract

台灣市區道路的交通狀況為混合車流,根據政府統計數據顯示,台灣近年來的私人運具使用率佔比超過70%,且由於機車擁有高效能與高機動性等特性,因此私人運具中,又以機車更受歡迎。儘管如此,機車對交通安全的影響著實為一項不小的隱憂。機車的車輛特性與駕駛行為和小汽車非常不同,也因為這些差異,導致台灣的機車事故率與肇事率是所有車種中最高的。 過去與交通安全評估相關的文獻大都以小汽車車流為主要研究對象,近年來,機車問題在世界各地機車使用率高的地方日趨嚴重,使得各地方越來越重視增進混合車流的安全與混合車流的安全評估。傳統的安全評估法存在其限制,促使新的評估法興起,也就是事故指標法。本研究即採用事故指標法,以time-to-collision (TTC)做為可行的事故指標法,並以交通衝擊為事故指標,探討TTC是否適合評估混合車流的安全。 本研究使用台北市忠孝東路四段的車流資料進行研究,車流資料中包含了每秒的車輛軌跡資料,並根據TTC的定義設計演算法,用以判斷車流資料中產生的交通衝擊數,也就是潛在的事故數目。此外,本研究亦進一步探討演算法結果的合理性與可靠性:利用空間分布熱圖可以辨識交通衝擊集中的區域是否符合一般印象中路段上的熱點,並且,本研究使用安全績效函數去分析混合車流中的機車比例與產生的交通衝擊數目兩者關係。 結果顯示本研究利用TTC法所得到的交通衝擊數目與發生地點均為合理,且交通衝擊的空間分布熱圖可以呈現既定印象中路段上的熱點,並且,透過安全績效函數亦得到混合車流中的機車比例確實與交通衝擊數有關的結果。

English Abstract

Taiwan’s traffic condition on urban arterials is mixed traffic. In Taiwan, the mode share of private transportation is over 70%, and scooters are popular in which. Despite of the high efficiency and mobility of scooters, traffic safety is a major concern. The attributes, maneuvering, and behavior of scooter riders are very different from those of cars drivers. The accident rate and fatality rate of scooters are very high among the mixed traffic in Taiwan. Previous studies focused on safety studies of automobiles, and there are recent interests in the safety evaluation of mixed traffic in which there is a high ratio of scooters. Since using crash surrogates on safety analysis is emerging in the past decade, this study aims to investigate the crash surrogate measures on safety of mixed traffic. We consider the time-to-collision (TTC) as the surrogate measure. A vehicle trajectory dataset collected in Taipei city is available for this study. The dataset contains the second-by-second positions of all vehicles in the traffic stream. An algorithm is developed to analyze the traffic conflicts, which is a potential of crashes, in two steps, (i) “Trajectories Projecting” and (ii) “Overlap Checking.” Then, we can derive all the traffic conflict cases for an assumed TTC value. Two further analyses are conducted to explore the rationality and reliability of the approach. The spatial distribution of traffic conflicts on the arterial are then investigated to check the rationality of the approach. Lastly, we propose to use a Safety Performance Function (SPF) to see if the frequencies of conflicts are related to the proportion of scooters in the mixed traffic. The results show that the conflicts identified with TTC are reasonable and a good representation of the observations. The spatial distribution can show the crash prone locations. Through the conflict-based SPF regression model, it is found that the percentage of scooters in mixed traffic is actually associated with conflict frequencies.

Topic Category 人文學 > 地理及區域研究
管理學院 > 運輸與物流管理學系
社會科學 > 管理學
Reference
  1. El-Basyouny, K., & Sayed, T. (2013). Safety Performance Functions Using Traffic Conflicts. Safety Science, 51(1), 160-164.
  2. Gettman, D., & Head, L. (2003). Surrogate Safety Measures from Traffic Simulation Models. Transportation Research Record, 1840(1), 104–115.
  3. Gettman, D., Pu, L., Sayed, T., & Shelby, S. G. (2008). Surrogate Safety Assessment Model and Validation : Final Report, (June), FHWA–HRT–08–051.
  4. Habtemichael, F. and Picado-Santos, L. (2012) Safety evaluation of aggressive driving on motorways through microscopic traffic simulation and surrogate measures. The 91st Annual Meeting of the Transportation Research Board, Washington, D.C.
  5. Huang, F., Liu, P., Yu, H. and Wang W. (2013) Identifying if VISSIM simulation model and SSAM provide reasonable estimates for field measured traffic conflicts at signalized intersections. Accident Analysis & Prevention, 50, 1014-1024.
  6. Hou, J., List, G. F., & Guo, X. (2014). New algorithms for computing the time-to-collision in freeway traffic simulation models. Computational intelligence and neuroscience, 2014, 57.
  7. Kanagaraj, V., Asaithambi, G., Toledo, T., & Lee, T. C. (2015). Trajectory Data and Flow Characteristics of Mixed Traffic. Transportation Research Record: Journal of the Transportation Research Board, (2491), 1-11.
  8. Kolody, K., Perez-Bravo, D., Zhao, J., & Neuman, T.R. (2014) Highway Safety Manual User Guide. National Cooperative Highway Research Program 17-50
  9. Laureshyn, A., Svensson, Å., & Hydén, C. (2010). Evaluation of traffic safety, based on micro-level behavioural data: Theoretical framework and first implementation. Accident Analysis & Prevention, 42(6), 1637-1646.
  10. Lee, T.-C., Polak, J. W. & Bell, M. G. (2008) Trajectory extractor user manual version 1.0. In, Working Paper. Centre for Transport Studies, Imperial College London, United Kingdom, http://myweb.ncku.edu.tw/~jtclee/bike/iccts01155.pdf. (Accessed July 1, 2015).
  11. Liao, C. H., Chen, Y. Y., Wong, K. I. (2015). Crash surrogate measures for mixed traffic flow. The 20th International Conference of Hong Kong Society for Transportation Studies.
  12. Minderhoud, M. M., & Bovy, P. H. (2001). Extended time-to-collision measures for road traffic safety assessment. Accident Analysis & Prevention, 33(1), 89-97. 
  13. Neale, V. L., Dingus, T. A., Klauer, S. G., Sudweeks, J., & Goodman, M. (2005). An overview of the 100-car naturalistic study and findings. National Highway Traffic Safety Administration, Paper, (05-0400).
  14. Nguyen, L. X., Hanaoka, S., & Kawasaki, T. (2014). Traffic conflict assessment for non-lane-based movements of motorcycles under congested conditions. IATSS research, 37(2), 137-147.
  15. Ozbay, K., Yang, H., Bartin, B., & Mudigonda, S. (2008). Derivation and validation of new simulation-based surrogate safety measure. Transportation Research Record: Journal of the Transportation Research Board, (2083), 105-113.
  16. Saffarzadeh, M., Nadimi, N., Naseralavi, S., & Mamdoohi, A. R. (2013, October). A general formulation for time-to-collision safety indicator. In Proceedings of the Institution of Civil Engineers-Transport, 166( 5), 294-304. Thomas Telford Ltd.
  17. Stevanovic, A., Stevanovic, J. and Kergaye, C. (2011) Optimizing Signal Timings to Improve Safety of Signalized Arterials. The 3rd International Conference on Road Safety and Simulation, September 14-16, Indianapolis, Indiana, USA.
  18. Sultan, B., & Mcdonald, M. (2003). Assessing The Safety Benefit of Automatic Collision Avoidance Systems (During Emergency Braking Situations). Proceedings of the 18th International Technical Conference on the Enhanced Safety of Vehicles (ESV), 44(0), 1–13.
  19. Tageldin, A., Sayed, T., & Wang, X. (2015). Can Time Proximity Measures Be Used as Safety Indicators in All Driving Cultures? A Case Study of Motorcycle Safety in China. In Transportation Research Board 94th Annual Meeting, D.C.
  20. Tarko, A., Davis, G., Saunier, N., Sayed, T., & Washington, S. (2009). White Paper SURROGATE MEASURES OF SAFETY ANB20(3) Subcommittee on Surrogate Measures of Safety ANB20 Committee on Safety Data Evaluation and Analysis.
  21. TECHBRIEF: Surrogate Safety Assessment Model (SSAM) , 2009, Final Report, FHWA-HRT-10-020
  22. Van Arem, B., De Vos, A. P., & Vanderschuren, M. J. (1997). The effect of a special lane for intelligent vehicles on traffic flows. TNO.
  23. Vlahogianni, E. I. (2014). Powered-Two-Wheelers kinematic characteristics and interactions during filtering and overtaking in urban arterials. Transportation research part F: traffic psychology and behaviour, 24, 133-145.
  24. Wong, K.I., Lee, T.-C. and Chen, Y.-Y. (2015) Traffic Characteristics of Mixed Traffic Flow in Urban Arterials. The 11th International Conference of Eastern Asia Society for Transportation Studies (EASTS), 11-14 September 2015, Philippines, Cebu. 
  25. Wu, K. F., & Jovanis, P. P. (2012). Crashes and crash-surrogate events: Exploratory modeling with naturalistic driving data. Accident Analysis & Prevention, 45, 507-516.
  26. 黃家耀等(2014),機車行為模式在都市混合車流中之實證分析及模式建立,交通部科技顧問室研究報告書。
  27. 黃家耀等(2015),混合車流模擬技術研發──機車行為研究,交通部科技顧問室研究報告書。
  28. 《警政統計年報》,2016年2月,內政部警政署。
  29. 《民眾日常使用運具狀況調查》,2016年2月,中華民國交通部統計處。
  30. 《交通安全統計報表》,2016年2月,中華民國交通部運輸研究所。
  31. 《警務統計年報》,2016年5月,台北市政府警察局。