Title

合成含腺嘌呤核苷之新型奈米碳管

Translated Titles

Incorporation of Multiple Adenosines onto Carbon Nanotubes

Authors

李柔盈

Key Words

去氧核醣核酸 ; 奈米碳管 ; 藥物載體 ; 腺嘌呤核苷 ; Adenosines ; DNA ; drug delivery ; carbon nanotubes

PublicationName

中央大學化學系學位論文

Volume or Term/Year and Month of Publication

2011年

Academic Degree Category

碩士

Advisor

胡紀如

Content Language

繁體中文

Chinese Abstract

近年來,奈米碳管已經被廣泛的應用在藥物載體方面,相較於傳統經血液循環使藥物分散於身體各器官,它可作為藥物載體投遞藥物至目標細胞或器官中,以避免藥物未到達目標細胞時即被免疫系統給代謝掉,提高藥效,因此實驗室設計一含腺嘌呤核苷衍生物之新型奈米碳管,其可作為辨認DNA序列之高專一性載體,將藥物準確投遞至目標細胞,降低藥物之副作用並提高疾病治癒效果。   其欲修飾至奈米碳管之腺嘌呤核苷衍生物,為利用3''-O-[(tert-butyl)-di-methylsilyl]-2''-deoxyadenosine (14)與9-azido-4,7-dioxanonanoic acid (7)進行酯化反應,得到具有azide官能基之5''-O-(9-azido-4,7-dioxanonanyl)-2''-deoxy-adenosine (16)。另一方面我們利用p-amino phenyl propargyl ether (19)進行官能基化修飾三鍵基團於奈米碳管上,接著藉由Click化學反應,使其具有azide官能基之腺嘌呤與奈米碳管上之三鍵進行銜接,合成含腺嘌呤核苷衍生物之新型奈米碳管 (2)。   並藉由紅外線光譜儀、拉曼散射儀器、熱重量損失分析儀及高解析掃描穿透式電子顯微鏡證實已成功得到腺嘌呤核苷衍生物之新型奈米碳管,重要的為Click反應產率為77%,相較於先前實驗室之Click產率提升兩倍,更加印證Click反應產率高、簡單且選擇性好,因而得到高效率之腺嘌呤核苷衍生物奈米碳管,此官能基化之奈米碳管即可應用於辨認疾病目標序列,成為高專一性之藥物投遞載體,優點為可接合上辨認不同疾病之DNA特殊序列,治癒更多疾病,並提高治療效果降低副作用,給予病患治療疾病一線生機。

English Abstract

Carbon nanotubes with their unique pseudo-one-dimensional nanostructures and related electronic, optical, and mechanical properties have been attracting much attention for potential biological applications, such as biosensors, bio-delivery, bio imaging and so on. Recently, carbon nanotubes have been explored as multipurpose innovative carriers for drug delivery and diagnostic applications. In this thesis, recent studies and advances toward bioapplications of carbon nanotubes are reviewed, followed by detailed reports on my research project concerning the use of stable complexes between carbon nanotubes and DNA for gene therapeutic capacity are mentioned.   In our project, we used 3''-O-[(tert-butyl)dimethylsilyl]-2''-deoxyadenosine (14) and 9-azido-4,7-dioxanonanoic acid (7) as our starting materials. The reaction with the adenosine derivative gave 5''-O-(9-azido-4,7-dioxanonanyl)-2''-deoxyadenosine (16). After that we successfully functionalized the carbon nanotubes by using the p-amino phenyl propargyl ether (19). Finally the functionalized carbon nanotube derivative (1) coupled with 5''-O-(9-azido-4,7-dioxanonanyl)-2''-deoxyadenosine (16) by using click reaction results multi-adenosine derivatives on to carbon nanotubes (2).   Then we used infrared spectroscopy, Raman spectra, thermogravimetric analysis spectra and HRSTEM spectra to confirm wrapping of multi-adenosine derivatives on to carbon nanotubes. Importantly, when we compared to previous data that the click reaction yield is enhanced to 77%. It indicates that the click reaction is simple and good selectivity with high efficiency. The functionalised carbon nanotubes has high specificity in drug delivery and targetting DNA sequence. The functionalised carbon nanotubes has the advantage to cure the diseases in efficient way with less side effects.

Topic Category 基礎與應用科學 > 化學
理學院 > 化學系
Reference
  1. 1. Kroto, H. W.; Heath, J. R.; O’Brien, S. C.; Curl, R. F.; Smalley, R. E. C60: Buckminsterfullerene. Nature 1985, 318, 162–163.
    連結:
  2. 2. Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.
    連結:
  3. 3. Iijima, S. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993, 363, 603–605.
    連結:
  4. 4. Bethune, D. S.; Klang, C. H.; Devries, M. S.; Gorman, G.; Savoy, R.; Vazquez, J.; Beyers, R. Cobalt-catalsyed growth of carbon nanotubes with single-atomic-layer walls. Nature 1993, 363, 605–607.
    連結:
  5. 5. Graff , R. A.;Swanson, T. M.; Strano, M. S. Synthesis of Nickel-Nitrilotriacetic Acid Coupled Single-Walled Carbon Nanotubes for Directed Self-Assembly with Polyhistidine-Tagged Proteins. Chem. Mater. 2008, 20,1824–1829.
    連結:
  6. 6. Bernholc, J.; Brenner, D.; Nardelli, M. B.; Meunier, V.; Roland, C. Mechanical and electrical properties of nanotubes. Annu. Rev. Mater. Res. 2002, 32, 347–375.
    連結:
  7. 7. Ramesh, P.; Itkis, M. E.; Bekyarova, E.; Wang, F.; Niyogi, S.; Chi, X.; Berger, C.; de Heer, W.; Haddon, R. C. Electro-oxidized Epitaxial Graphene Channel Field-Effect Transistors with Single-Walled Carbon Nanotube Thin Film Gate Electrode. J. Am. Chem. Soc. 2010, 132, 14429–14436.
    連結:
  8. 8. Rinkio, M.; Johansson, A.; Kotimaki, V.; Torma, P. Negative Differential Resistance in Carbon Nanotube Field-Effect Transistors with Patterned Gate Oxide. ACS Nano 2010, 4, 3356–3362.
    連結:
  9. 9. Martinez, M. T.; Tseng, Y. C.; Salvador, J. P.; Marco, M. P.; Ormategui, N.; Loinaz, I.; Bokor, J. Electronic Anabolic Steroid Recognition with Carbon Nanotube Field-Effect Transistors. ACS Nano 2010, 4, 1473–1480.
    連結:
  10. 10. Wen, S.; Koo, S. K.; Yam, C. Y.; Zheng, X.; Yan, Y. J.; Su, Z.; Fan, K.; Cao, L.; Wang, W.; Chen, G. H. Time-Dependent Current Distributions of a Two-Terminal Carbon
    連結:
  11. 11. Jackson, R. K.; Munro, A.; Nebesny, K.; Armstrong, N.; Graham, S. Evaluation of Transparent Carbon Nanotube Networks of Homogeneous Electronic Type. ACS Nano 2010, 4, 1377–1384.
    連結:
  12. 12. Wong, S. –S.; Ojima, I. Functionalized Single-Walled Carbon Nanotubes as Rationally Designed Vehicles for Tumor-Targeted Drug Delivery. J. Am. Chem. Soc. 2008, 130, 16778–16785.
    連結:
  13. 13. Prato, M.; Kostarelos, K.; Bianco, A. Functionalized Carbon Nanotubes in Drug Design and Discovery. Acc. Chem. Res. 2008, 41, 60–68.
    連結:
  14. 14. Liu, Z.; Chen, K.; Davis, C.; Sherlock, S.; Cao, Q.; Chen, X.; Dai, H. Drug Delivery with Carbon Nanotubes for In vivo Cancer Treatment. Cancer Res. 2008, 68, 6652–6660.
    連結:
  15. 15. Lacerda, L.; Bianco, A.; Prato, M.; Kostarelos, K.Carbon nanotube cell translocation and delivery of nucleic acids in vitro and in vivo. J. Mater. Chem. 2008, 18, 17–22.
    連結:
  16. 16. Bianco, A.; Hoebeke, J.; Godefroy, S.; Chaloin, O.; Pantarotto, D.; Briand, J. P.; Muller, S.; Prato, M.; Partidos, C. D. Cationic Carbon Nanotubes Bind to CpG Oligodeoxynucleotides and Enhance Their Immunostimulatory Properties. J. Am. Chem. Soc. 2005, 127, 58–59.
    連結:
  17. 17. Miyawaki, J.; Yudasaka, M.; Azami, T.; Kubo, Y.; Iijima, S. Toxicity of Single-Walled Carbon Nanohorns. ACS Nano 2008, 2, 213–226.
    連結:
  18. 18. Yang, S. –T.; Fernando, K. A. S.; Liu, J. –H.; Wang, J.; Sun, H. –F.; Liu, Y.; Chen, M.; Huang, Y.; Wang, X.; Wang, H.; Sun, Y. –P. Covalently PEGylated Carbon Nanotubes with Stealth Character In Vivo. Small 2008, 4, 940–944.
    連結:
  19. 19. Shelimov, K. B.; Esenaliev, R. O.; Rinzler, A. G.; Huffman, C. B.; Smalley, R. E. Purification of single-wall carbon nanotubes by ultrasonically assisted filtration. Chem. Phys. Lett. 2002, 355, 279–284.
    連結:
  20. 20. Li, Y. B.; Wei, B. Q.; Liang, J.; Yu, Q.; Wu, D. H. Transformation of carbon nanotubes to nanoparticles by ball milling process. Carbon 1999, 37, 493–497.
    連結:
  21. 21. Etika, K. C.; Jochum, F. D.; Theato, P.; Grunlan, J. C. Temperature Controlled Dispersion of Carbon Nanotubes in Water with Pyrene-Functionalized Poly(N-cyclopropyl- acrylamide). J. Am. Chem. Soc. 2009, 131, 13598–13599.
    連結:
  22. 22. Matarredona, O.; Rhoads, H.; Li, Z.; Harwell, J. H.; Balzano, L.; Resasco, D. E. Dispersion of Single-Walled Carbon Nanotubes in Aqueous Solutions of the Anionic Surfactant NaDDBS. J. Phys. Chem. B 2003, 107, 13357–13367.
    連結:
  23. 23. Dyke, C. A.; Tour, J. M. Solvent-Free Functionalization of Carbon Nanotubes. J. Am. Chem. Soc. 2003, 125, 1156–1157.
    連結:
  24. 24. Holzinger, M.; Abraham, J.; Whelan, P.; Graupner, R.; Ley, L.; Hennrich, F.; Kappes, M.; Hirsch, A. Functionalization of Single-Walled Carbon Nanotubes with (R-)Oxycarbonyl Nitrenes. J. Am. Chem. Soc. 2003, 125, 8566–8580.
    連結:
  25. 25. Liu, Y.; Yao, Z.; Adronov, A. Functionalization of Single-Walled Carbon Nanotubes with Well-Defined Polymers by Radical Coupling. Macromolecules 2005, 38, 1172–1179.
    連結:
  26. 26. Buffa, F.; Hu, H.; Resasco, D. E. Side-Wall Functionalization of Single-Walled Carbon Nanotubes with 4-Hydroxymethylaniline Followed by Polymerization of ε-Caprolactone. Macromolecules 2005, 38, 8258–8263.
    連結:
  27. 27. Qin, S.; Qin, D.; Ford, W. T.; Resasco, D. E.; Herrera, J. E. Functionalization of Single-Walled Carbon Nanotubes with Polystyrene via Grafting to and Grafting from Methods. Macromolecules 2004, 37, 752–757.
    連結:
  28. 28. Kauffman, D. R.; Sorescu, D. C.; Schofield, D. P.; Allen, B. L.; Jordan, K. D.; Star, A. Understanding the Sensor Response of Metal-Decorated Carbon Nanotubes. Nano Lett. 2010, 10, 958–963.
    連結:
  29. 29. Liu, Z.; Davis, C.; Cau, W.; He, L.; Chen, X.; Dai, H. Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 1410–1415.
    連結:
  30. 30. Palacin, T.; Khanh, H. L.; Jousselme, B.; Jegou, P.; Filoramo, A.; Ehli, C.; Guldi, D. M.; Campidelli, S. Efficient Functionalization of Carbon Nanotubes with Porphyrin Dendrons via Click Chemistry. J. Am. Chem. Soc. 2009, 131, 15394–15402.
    連結:
  31. 31. Li, H.; Cheng, F.; Duft, A. M.; Adronov, A. Functionalization of Single-Walled Carbon Nanotubes with Well-Defined Polystyrene by “Click” Coupling. J. Am. Chem. Soc. 2005, 127, 14518–14524.
    連結:
  32. 32. Mei, D. S.; Qu, Y.; He, J. X.; Chen, L.; Yao, Z. J. Syntheses and characterizations of novel pyrrolocoumarin probes for SNAP-tag labeling technology. Tetrahedron 2011, 67, 2251–2259.
    連結:
  33. 33. Wosnick, J. H.; Mello, C. M.; Swager, T. M. Synthesis and Application of Poly(phenylene Ethynylene)s for Bioconjugation: A Conjugated Polymer-Based Fluorogenic Probe for Proteases. J. Am. Chem. Soc. 2005, 127, 3400–3405.
    連結:
  34. 34. Newkome, G. R.; Kotta, K. K.; Mishra, A.;Moorefield, C. N. Synthesis of Water-Soluble, Ester-Terminated Dendrons and Dendrimers Containing Internal PEG Linkages. Macromolecules 2004, 37, 8262–8268.
    連結:
  35. 35. Furrer, E.; Giese, B. On the Distance-Independent Hole Transfer over Long (A‧T)n-Sequences in DNA. Helv. Chim. Acta 2003, 86, 3623–3632.
    連結:
  36. 36. Higashi, T.; Isobe, Y.; Ouchi, H.; Suzuki, H.; Okazaki, Y.; Asakawa, T.; Furuta, T.; Wakimoto, T.; Kan, T. Stereocontrolled Synthesis of (+)-Methoxyphenylkainic Acid and (+)-Phenylkainic Acid. Org. Lett. 2011, 13, 1089–1091.
    連結:
  37. 38. Liu, F.; Liu, J.; Zhao, T. Synthesis of a Novel Series of Propargyloxyphenyl Maleimides and Their Characterization as Thermal-Resistance Resins. J. Appl. Polym. Sci. 2010, 115, 3103–3109.
    連結:
  38. 39. Campidelli, S.; Ballesteros, B.; Filoramo, A.; Diaz, D. D.; de la Torre, G.; Torres, T.; Rahman, G. M. A.; Ehli, C.; Kiessling, D.; Werner, F.; Sgobba, V.; Guldi, D. M.; Cioffi, C.; Prato, M.; Bourgoin, J. P. Facile Decoration of Functionalized Single-Wall Carbon Nanotubes with Phthalocyanines via “Click Chemistry”. J. Am. Chem. Soc. 2008, 130, 11503–11509.
    連結:
  39. 40. Hwu, J. R.; King, K. Y. Versatile reagent ceric ammonium nitrate in modern chemical synthesis. Curr. Sci. 2001, 81, 1043–1053.
    連結:
  40. 41. Kazzouli, S. E.; Koubachi, J.; Berteina-Raboin, S.; Mouaddibb, A.; Guillaumet, G. A mild and selective method for the N-Boc deprotection by sodium carbonate. Tetrahedron 2006, 47, 8575–8577.
    連結:
  41. 42. Yin, B. L.; Zhang, Y. X. An Unusual N-Boc Deprotection of Benzamides under Basic Conditions. Chin. J. Chem, 2009, 27, 1645–1648.
    連結:
  42. 43. Wu,Y. Q.; Limburg, D. C.; Wilkinson, D. E.; Vaal, M. J.; Hamilton, G. S. A mild deprotection procedure for tert-butyl esters and tert-butyl ethers using ZnBr2 in methylene chloride. Tetrahedron 2000, 41, 2847–2849.
    連結:
  43. 44. Hara, S.; Makino, K.; Hamada, Y. Total synthesis of halipeptin A, a potent anti-inflammatory cyclodepsipeptide from a marine sponge. Tetrahedron 2006, 47, 1081–1085.
    連結:
  44. 45. Accorsi, G.; Armaroli, N.; Parisini, A.; Meneghetti, M.; Marega, R.; Prato, M.; Bonifazi, D. Wet Adsorption of a Luminescent EuIII complex on Carbon Nanotubes Sidewalls. Adv. Funct. Mater. 2007, 17, 2975–2982.
    連結:
  45. 46. Vecitis, C. D.; Gao, G.; Liu, H. Electrochemical Carbon Nanotube Filter for Adsorption, Desorption, and Oxidation of Aqueous Dyes and Anions. J. Phys. Chem. C 2011, 115, 3621–3629.
    連結:
  46. 47. Zhu, J.; Shim, B. S.; Prima, M. D.; Kotov, N. A. Transparent Conductors from Carbon Nanotubes LBL–Assembled with Polymer Dopant with π–π Electron Transfer. J. Am. Chem. Soc. 2011, 133, 7450–7460.
    連結:
  47. 48. Lachman, N.; Bartholome, C.; Miaudet, P.; Maugey, M.; Poulin, P.; Wagner, H. D. Raman Response of Carbon Nanotube/PVA Fibers under Strain. J. Phys. Chem. C 2009, 113, 4751–4754.
    連結:
  48. 49. Yu, B.; Liu, C.; Hou, P. X.; Tian, Y.; Li, S.; Liu, B.; Li, F.; Kauppinen, E. I.; Cheng, H. M. Bulk Synthesis of Large Diameter Semiconducting Single-Walled Carbon Nanotubes by Oxygen-Assisted Floating Catalyst Chemical Vapor Deposition. J. Am. Chem. Soc. 2011, 133, 5232–5235.
    連結:
  49. 50. Odom, T.W.; Huang, J. L.; Kim, P.; Lieber, C. M. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 1998, 391, 62–64.
    連結:
  50. 52. Zhao, J.; Buldum, A.; Han, J.; Lu, J. P. Gas molecule adsorption in carbon nanotubes and nanotube bundles. Nanotechnology 2002, 13, 195–200.
    連結:
  51. 53. Zhao, J.; Lu, J. P.; Han, J.; Yang, C. K. Noncovalent functionalization of carbon nanotubes by aromatic organic molecules. Appl. Phys. Lett. 2003, 82, 3746–3748.
    連結:
  52. 54. Himo, F.; Lovell, T.; Hilgraf, R.; Rostovtsev, V. V.; Noodleman, L.; Sharpless, K. B.; Fokin, V. V. Copper(I)-Catalyzed Synthesis of Azoles. DFT Study Predicts Unprecedented Reactivity and Intermediates. J. Am. Chem. Soc. 2005, 127, 210–216.
    連結:
  53. 55. Bock, V. D.; Hiemstra, H.; van Maarseveen, J. H. CuI-Catalyzed Alkyne–Azide “Click” Cycloadditions from a Mechanistic and Synthetic Perspective. Eur. J. Org. Chem. 2006, 1, 51–68.
    連結:
  54. Nanotube-Based Electronic Device. J. Phys. Chem. B 2011, 115, 5519–5525.
  55. 37. http://pubs.acs.org/page/joceah/submission/authors.html
  56. 51. Dresselhaus, M. S.; Dresselhaus, G.; Eklund P. C. Science of Fullerenes and Carbon Nanotubes. Academic Press, San Diego 1996 Ch.2 Carbon Materials.