Title

高分子分散液晶薄膜用於可調變全像影像之研究

Translated Titles

Study of tunable holographic image in polymer dispersed liquid crystal films

Authors

陳建昇

Key Words

高分子分散液晶 ; 複合全像術 ; holography ; polymer dispersed liquid crystal

PublicationName

中央大學光電科學研究所學位論文

Volume or Term/Year and Month of Publication

2011年

Academic Degree Category

碩士

Advisor

陳啟昌;徐桂珠;鄭益祥

Content Language

繁體中文

Chinese Abstract

在本論文中,我們將光聚合物與液晶混合製作成高分子分散液晶 (polymer dispersed liquid crystal, PDLC)薄膜,利用這種材料記錄全像影像資訊,並且藉由外加電壓改變液晶的排列方向,使液晶折射率改變,而做出可由電壓調變的全像片。在實驗方面可分為兩個部分,第一部分為利用高分子分散液晶記錄光柵並分析其光電特性。我們利用NOA61 與E7 混合製作成PDLC薄膜並以雙光束干涉的方式記錄光柵於薄膜中,所記錄的光柵在外加0V 電壓時繞射效率為4.7%,而加入40V 電壓時繞射效率提升至11.4%。 第二部分為複製全像片影像於高分子分散液晶。我們將可360 度 環繞觀賞的成像面圓盤型複合全像片做為複製母片,利用單光束複製 系統,將影像資訊複製於高分子分散液晶中,而隨著外加電壓上升, 影像亮度也隨之提升,具有可由電壓調變的效果。

English Abstract

In this study, we use polymer dispersed liquid crystal (PDLC) films to record holographic image. The PDLC sample is fabricated by using the mixture with photopolymer and liquid crystal. We reorient the director of liquid crystal by applied electric field so that the refraction index of liquid crystal will be changed. Therefore, we can use this material as electric tunable holographic recording medium. In this experiment, the PDLC sample is fabricated by using the mixture with NOA61 and E7 and it is used to record grating by two-beams interference. At zero field, the diffraction is 4.7%, at 40V applied field, the diffraction is up to 11.4%. In holographic image record, we use 360 degree viewable image-plane disk type multiplex holograms as master hologram, and copy image information from master hologram to PDLC sample by single-beam copying system. The image in PDLC sample can be switched by applied electric field.

Topic Category 理學院 > 光電科學研究所
工程學 > 電機工程
Reference
  1. [1] D. Gabor, “A new microscopic principle,” Nature 161, 777 (1948).
    連結:
  2. communication theory,” J. Opt. Soc. Am. 52, 1123 (1962).
    連結:
  3. [3] E. N. Leith and J. Upatnieks, “Wavefront reconstruction with
    連結:
  4. continuous-tone objects,” J. Opt. Soc. Am. 53, 1377 (1963).
    連結:
  5. [4] E. N. Leith and J. Upatnieks, “Wavefront reconstruction with
    連結:
  6. diffused illumination and three-dimensional objects,” J. Opt. Soc.
    連結:
  7. Am. 54, 1295 (1964).
    連結:
  8. sources,” J. Opt. Soc. Am. 59, 1545 (1969).
    連結:
  9. [6] J. T. McCrickerd and N. George, “Holographic Stereogram from
    連結:
  10. transparencies,” Opt. Lett. 9, 381 (1984).
    連結:
  11. [9] E. N. Leith and H. Chen, “Deep-image rainbow holograms,” Opt.
    連結:
  12. [10] R. V. Pole, “3-D imagery and holograms of objects illuminated in
    連結:
  13. white light,” Appl. Phys. Lett. 10, 20 (1967).
    連結:
  14. [11] M. Yamaguchi, H. Endoh, T. Honda, and N. Ohyama,
    連結:
  15. “High-quality recording of a full-parallax holographic stereograms
    連結:
  16. three-dimensional printer: new method,” Appl. Opt. 31, 217 (1992).
    連結:
  17. recording method for holographic three-dimensional animation,” J.
    連結:
  18. Opt. Soc. Am. 9, 1200 (1992).
    連結:
  19. [14] D. J. DeBitetto, “Holographic panoramic stereograms synthesized
    連結:
  20. [16] L. Huff and R. L. Fusek, “Color holographic stereograms,” Opt.
    連結:
  21. [17] E. N. Leith and P. Voulgaris, “Multiplex holography: some new
    連結:
  22. methods,” Opt. Eng. 24, 171 (1985).
    連結:
  23. [18] G. Saxby, Practical Holography, 2nd ed., Prentice-Hall, Englewood
    連結:
  24. Cliffs, N.J, 308 (1994).
    連結:
  25. [19] S. A. Benton, “Alcove holograms for computer-aided design,” in
    連結:
  26. True Three-Dimensional Imaging Techniques and Display
    連結:
  27. [21] J. Upatnieks, “Edge-illuminated holograms,” Appl. Opt. 31, 1048
    連結:
  28. holographic stereograms,” Opt. Commun. 73, 347 (1989).
    連結:
  29. conical holographic stereogram,” Opt. Eng. 34, 814 (1995).
    連結:
  30. “Distortion compensation and perspective correction method for a
    連結:
  31. conical holographic stereogram,” Opt. Eng. 36, 1706 (1997).
    連結:
  32. [25] Y. S. Cheng, S. Y. Chen, and R. C. Chang, “Distortion correction
    連結:
  33. for conical multiplex holography using direct object-image
    連結:
  34. relationship,” Proc. Natl. Sci. (2001).
    連結:
  35. holography,” Appl. Opt. 38, 3093 (1999).
    連結:
  36. [27] T. A. Shankoff, “Phase Holograms in Dichromated Gelatin,” Appl.
    連結:
  37. Opt. 7, 2101 (1968).
    連結:
  38. McClung, “Hologram Recording on Photopolymer Materials” Appl.
    連結:
  39. Phys. Lett. 14, 159 (1968).
    連結:
  40. containing encapsulated cholesteric liquid crystals,” US Patent
    連結:
  41. 3,578,844, (1971).
    連結:
  42. [31] J. L. Fergason, “Encapsulated liquid crystal and method,” US
    連結:
  43. dispersed liquid crystal (HPDLC) with high reflection efficiency,”
    連結:
  44. Jpn. J. Appl. Phys. 38, 277 (1999).
    連結:
  45. “All-optical switching of holographic gratings made of
    連結:
  46. polymer-liquid crystal,” Appl. Phys. Lett. 93, 181115 (2008).
    連結:
  47. and H. Ono, “Effects of thermal modulation on diffraction in liquid
    連結:
  48. [36] 陳志宏, "產生實像之成像面圓盤型複合全像做片製作與複製研
    連結:
  49. 究," 國立中央大學, 光電科學研究所 (2005).
    連結:
  50. Son (1984).
    連結:
  51. [39] R. J. Colliier, C. B. Burckhardt, L. H. Lin, “Optical Holography,”
    連結:
  52. Devices,” John Wiley & Sons, Ltd. (2006).
    連結:
  53. “Electro-optical properties of a PDLC based on unsaturated
    連結:
  54. polyester resin,” Appl. Phys. B 70, 249 (2000).
    連結:
  55. [43] J. Klostermana, L.V. Natarajan, V.P. Tondiglia, R.L. Sutherland,
    連結:
  56. surfactant in reflective HPDLC gratings,” Polymer, 45, 7213
    連結:
  57. refractive indices of liquid crystals,” J. Appl. Phys. 97, 073501
    連結:
  58. [2] E. N. Leith and J. Upatnieks, “Reconstructed wavefronts and
  59. [5] S. A. Benton, “Hologram reconstructions with extended light
  60. Sequential Component Photographs,” Appl. Phys. Lett. 12, 10
  61. [7] D. J. De Bitetto, “Bandwidth reduction of hologram transmission
  62. system by elimination of vertical parallax,” Appl. Phys. Lett. 12,
  63. 176 (1968).
  64. [8] R. D. Bahuguna and F. Mendoza-Santoyo, “Simple
  65. rainbow-holographic techniques for two-dimensional
  66. Lett. 2, 82 (1978).
  67. 55
  68. with a digital diffuser,” Opt. Lett. 19, 135 (1994).
  69. [12] M. Yamaguchi, N. Ohyama, and T. Honda, “Holographic
  70. [13] M. Yamaguhi, H. Sugiura, T. Honda, and N. Ohyama, “Automatic
  71. from white light recordings,” Appl. Opt. 8, 1740 (1969).
  72. [15] D. J. DeBitetto, “Transmission bandwidth reduction of holographic
  73. stereograms recorded in white light,” Appl. Phys. Lett. 12, 343
  74. (1968).
  75. Eng. 19, 691 (1980).
  76. Technologies, D. F. McAllister and W. E. Robbins (eds.), Proc.
  77. SPIE 761, 53 (1987).
  78. [20] N. D. Haig, “Three-dimensional holograms by rotational
  79. multiplexing of two-dimensional films,” Appl. Opt. 12, 419 (1973).
  80. (1992).
  81. 56
  82. [22] K. Okada, S. Yoshii, Y. Yamaji, J. Tsujiuchi and T. Ose, “Conical
  83. [23] L. M. Murillo-Mora, K. Okada, T. Honda, and J. Tsujiuchi, “Color
  84. [24] L. M. Murillo-Mora, K. Okada, T. Honda, and J. Tsuijiuchi,
  85. [26] Y. S. Cheng, W. H. Su, and R. C. Chang, “Disk-type multiplex
  86. [28] K. S. Pennington, J. S. Harper, and F. P. Laming, “New
  87. Phototechnology Suitable for Recording Phase Holograms and
  88. Similar Information in Hardened Gelatin,” Appl. Phys. Lett. 18, 82
  89. (1971).
  90. [29] D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, and F. J.
  91. [30] D. Churchill, J. V. Cartmell. “Radiation sensitive display device
  92. Patent 4,435,047, (1984).
  93. 57
  94. [32] R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, and T. J. Bunning,
  95. “Bragg Gratings in an AcrylatePolymer Consisting of Periodic
  96. Polymer-Dispersed Liquid-Crystal Planes,” Chem. Mater. 5, 1533
  97. (1993).
  98. [33] K. Tanaka, K. Kato, M. Date, “Fabrication of holographic polymer
  99. [34] L. D. Sio, A. Veltri, C. Umeton, S. Serak, and N. Tabiryan,
  100. [35] A. Ogiwara, H. Kakiuchida, K. Yoshimura, M. Tazawa, A. Emoto,
  101. crystal composite gratings,” Appl. Opt. 49, No. 24 / 20 4633
  102. August (2010).
  103. [37] 松本正一, 角田市良合著, 劉瑞祥譯, "液晶之基礎與應用," 國
  104. 立編譯館 (1996).
  105. [38] P. Yeh and A. Yariv, “Optical Waves in crystals,” John Wiley &
  106. New York: Academic Press (1971).
  107. [40] D. K. Yang and S. T. Wu “Fundamentals of Liquid Crystal
  108. 58
  109. [41] http://omlc.ogi.edu/spectra/PhotochemCAD/html/rosebengal.html
  110. [42] P. Mormile, P. Musto, L. Petti, G. Ragosta, P. Villano,
  111. T.J. White,C.A. Guymon, T.J. Bunning, “The influence of
  112. (2004).
  113. [44] J. Li, S. T. Wu, S. Brugioni, R. Meucci, S. Faetti, “Infrared
  114. (2005).
Times Cited
  1. 楊孟儒(2013)。液晶摻雜偶氮染料與自組織材料之光電特性研究與其應用。虎尾科技大學光電與材料科技研究所學位論文。2013。1-76。