Title

應用RGB影像處理模式於辨識地理環境變異之研究

Translated Titles

Developing a RGB recognition model for the disaster caused by Typhoon Morakot in Taiwan

Authors

李樹璇

Key Words

遙測影像 ; 變異監測 ; 影像處理 ; remote sensing imagery ; typhoon disaster. ; RGB damage assessment

PublicationName

中央大學營建管理研究所學位論文

Volume or Term/Year and Month of Publication

2012年

Academic Degree Category

碩士

Advisor

陳介豪

Content Language

繁體中文

Chinese Abstract

本研究之目的在於利用具有即時性及周期性之遙測影像判釋橋梁周遭地區如崩塌地、林地、河道、河道寬度因災損而造成的改變,且針對此部分開發一個影像辨識系統以供使用,用以判斷災損嚴重程度。 本研究利用國立中央大學太空及遙測研究中心遙測影像訂購系統訂購八八風災災前災後之福衛二號遙測影像,利用設定橋梁經緯度座標挑選訂購橋梁遙測影像,其中包含設定日期範圍及過濾含雲量過高之遙測影像,使用災前災後遙測影像Pixel點之像素點RGB變化作為判釋主要依據同時進行變異監測,以C++為基礎開發一套影像判釋系統主要能對RGB變化判釋及包含各種影像處理功能如label、dialation、erosion、bone、cutline等影像處理功能加強對於遙測影像上需要處理的部分,根據RGB影像處理模式得出之結果進行處理則可得知河道骨幹及平均寬度,能夠清楚的表明災前災後遙測影像的變化及變化程度,並利用災前災後河道骨幹套疊了解河道改道狀況。 根據所得之結果能夠求得受災地區之面積變化、受災河道寬度之變化、何處受災程度嚴重、河道改道靠近鄰近村落情形,以此資訊幫助受損橋梁周遭災害範圍辨識,並利用Google SketchUP進行辨識範圍準確度驗證,準確度驗證結果有89%以上。

English Abstract

Typhoon Morakot has been the most severe typhoon disaster to strike Taiwan in recent decades causing tremendous damage to bridge surroundings in 2009. However, we still lack a means of assessing post-typhoon damage for follow-up rebuilding. This paper presents an integrated model that automatically measures changes in rivers, areas of damage to bridge surroundings, and changes in vegetation. The proposed model is based on a RGB enanced by the SOM optimization algorithm, and also includes the particular functions of dilation, erosion, and skeletonization to deal with river imagery. High resolution FORMOSAT-2 satellite imagery from before and after the invasion period is adopted. A bridge is randomly selected from the 129 destroyed due to the typhoon for applications of the model. The recognition results show that the river average width has increased 66% with a maximum increase of over 200%. The ruined segment of the bridge is located exactly in the most scoured region. There has also been a nearly 10% reduction in the vegetation coverage. The results yielded by the proposed model demonstrate a pinpoint accuracy rate of 99.94%. This study successfully develops a tool for large-scale damage assessment as well as for precise measurement after disasters.

Topic Category 工學院 > 營建管理研究所
工程學 > 土木與建築工程
社會科學 > 管理學
Reference
  1. 洪如江,(2001),初等工程地質學大綱,財團法人地工技術研究發展基金會,臺北。
    連結:
  2. 林文賜,周天穎,林昭遠, (2001),“應用監督性類神經網路於衛星影像分類技術之探討”,航測及遙測學刊,第六卷第一期,第41-58 頁。
    連結:
  3. 蕭淳伊,曾義星, (2009),“應用遙測影像與空載光達資料推估森林分佈面積及樹冠體積”,航測及遙測學刊,第十四卷第一期,第51-64 頁。
    連結:
  4. 黃韋凱,林銘郎,陳良健,林彥享,蕭震洋, (2010),“物件導向分析方法應用於遙測影像之分區及崩塌地與人工設施分類”,航測及遙測學刊,第十五卷第一期,第29-49 頁。
    連結:
  5. 黃凱易,(2000),“逐層分割群聚法及反覆移動均值群聚法於地覆非監督式分類之比較,”航測及遙測學刊”,第五卷第三期,第43-55頁。
    連結:
  6. 鄭伊凡,(2010), "運用福爾摩沙二號衛星高時空分辨率遙測影像探討曾文水庫水質之時空變化",國立成功大學,碩士論文,台南。
    連結:
  7. 吳敦安,(2006),” "福爾摩沙衛星二號遙測影像應用於河川砂石資源開採區域判釋",國立成功大學水利及海洋工程研究所,碩士論文,台南。
    連結:
  8. 洪凱鄭(2009) ,”應用多光譜影像多種特徵偵測崩塌地之研究” ,國立成功大學空間資訊學系碩士論文,台南。
    連結:
  9. Bazi, Y. and Melgani, F. (2010). "Gaussian process approach to remote sensing image classification." IEEE Transactions on Geoscience and Remote Sensing 48(1): 186-197.
    連結:
  10. Bulsari, A. B., Kraslawski, A., Saxen, H. (1993). "Implementing a fuzzy expert system in an artificial neural network." Computers and Chemical Engineering 17(suppl): 405-410.
    連結:
  11. Blaschke, T. (2010). "Object based image analysis for remote sensing." ISPRS Journal of Photogrammetry and Remote Sensing 65(1): 2-16.
    連結:
  12. Breckling, B., Laue H ,Pehlke H. (2011). "Remote sensing as a data source to analyse regional implications of genetically modified plants in agriculture—Oilseed rape (Brassica napus) in Northern Germany." Ecological Indicators 11(4): 942-950.
    連結:
  13. Brewin, R. J. W., Hardman-Mountford,N . J ,Lavender , S. J.,Raitsos, D . E.,Hirata, T.,Uitz, J.,Devred, E.,Bricaud, A.,Ciotti, A.,Gentili, B. (2011). "An intercomparison of bio-optical techniques for detecting dominant phytoplankton size class from satellite remote sensing." Remote Sensing of Environment 115(2 ): 325-339.
    連結:
  14. Chanzy, A., Bruckler, L., Perrier, A. (1995). "Soil evaporation monitoring: A possible synergism of microwave and infrared remote sensing." Journal of Hydrology 165(1-4): 235-259.
    連結:
  15. Fageth, R., Allen, W. G.,Jaeger, U., (1996). "Fuzzy logic classification in image processing." Fuzzy Sets and Systems 82(3): 265-278.
    連結:
  16. Field, C. T. and Millar,P. S. (1999). "Laser remote-sensing system analysis for search and rescue." Applied Optics 38(12): 2586-2593.
    連結:
  17. Galvao, L. S., Formaggio, A. R.,Couto, E. G.,Robert, D. A. (2008). "Relationships between the mineralogical and chemical composition of tropical soils and topography from hyperspectral remote sensing data." ISPRS Journal of Photogrammetry and Remote Sensing 63(2): 259-271.
    連結:
  18. Gan, R. and Yang, D. (1994). "Case-based decision support system with artificial neural network." Computers and Industrial Engineering 27(1-4): 437-440.
    連結:
  19. Harding Jr, L. W., Itsweire, E. C.,Esaias, W. E., (1992). "Determination of phytoplankton chlorophyll concentrations in the Chesapeake Bay with aircraft remote sensing." Remote Sensing of Environment 40(2): 79-100.
    連結:
  20. Hikita, M., Fujimori, M.,Hayakawa, N.,Okubo, H. (1995). "Image process discharge classification under nonuniform fields in air and He at low pressure." IEEE Transactions on Dielectrics and Electrical Insulation 2(2): 263-268.
    連結:
  21. Haykin, S. (1999). “Neural Networks”, 2nd Ed., Prentice Hall, Upper Saddle River, NJ
    連結:
  22. J. A. Richards and X. Jia,(1993), “Remote Sensing Digital Image Analysis: An Introduction”,Springer-Verlag Berlin Heidelberg, Third Edition.
    連結:
  23. Kurekin, A., D.Radford, D.,Lever, K.,Marshallm D., Shark, L. k. (2011). "New method for generating site-specific clutter map for land-based radar by using multimodal remote-sensing images and digital terrain data." IET Radar, Sonar and Navigation 5(3): 374-388.
    連結:
  24. Luo, W.-F., Zhong, L.,Zhang, B.,Gao, L.-R. (2010). "Independent component analysis for spectral unmixing in hyperspectral remote sensing image." Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis 30(6): 1628-1633.
    連結:
  25. Li, W. and Guo, Q. (2010). "A maximum entropy approach to one-class classification of remote sensing imagery." International Journal of Remote Sensing 31(8): 2227-2235.
    連結:
  26. Lizarazo, I. (2008). "SVM-based segmentation and classification of remotely sensed data." International Journal of Remote Sensing 29(24): 7277-7283.
    連結:
  27. MacGregor, J. F., Bharati, M. H., Yu, H.(2001) " Multivariate Image Analysis for process monitoring and control" Proc SPIE Int Soc Opt Eng p.17-26
    連結:
  28. M. C. Su, C. -W. Liu, and S. -S. Tsay,( 1999),“Neural-network-based fuzzy model and its application to transient stability prediction in power systems,”IEEE Trans. Syst.,
    連結:
  29. M. C. Su, C. T. Hsieh, and C. C. Chin,( 1998),“A neuro-fuzzy approach to speech recognition without time alignment,” Fuzzy Sets and Systems, vol. 98, no. 1, pp. 33-41.
    連結:
  30. M. C. Su,( 1994) "Use of neural networks as medical diagnosis expert systems,"
    連結:
  31. Computers in Biology and Medicine,vol.24,no.6,pp.419-429.
    連結:
  32. Pratt, W. K. (1991). "Digital Image Processing." John Wiley & Sons, Inc
    連結:
  33. Shen, Y.-T., Ni, G.-Q.,Xu, D.-Q.,Jiang, L.-L.,He, J.-P. (2008). "Study on gas exploration by hyperion hyperspectral remote sensing data." Hongwai Yu Haomibo Xuebao/Journal of Infrared and Millimeter Waves 27(3): 210-213+223.
    連結:
  34. Su, M. C., and Chang, H. C. (2000). “Fast self-organizing feature map algorithm,” IEEE Trans. On Neural Networks, 13(3), 721-733.
    連結:
  35. Su, M. C., Zhao,Y. X., and Lee, J. (2004). “SOM-based Optimization.” in 2004 IEEE International Joint Conf. on Neural Networks IJCNN, Budapest, Hungary,pp.781-786.
    連結:
  36. Sharpe, R. N., Chow, M.-Y.,Briggs, S., Windingland, L. (1994). "Methodology using fuzzy logic to optimize feedforward artificial neural network configurations." IEEE Transactions on Systems, Man and Cybernetics 24(5): 760-767.
    連結:
  37. Su, M. C., Liu, T. K., and Chang, H. T. (1999). “An efficient initialization scheme for the self-organizing feature map algorithm.” in IEEE Int. Joint Conference on Neural Networks, pp.1906-1910.
    連結:
  38. Tsai , F. , Lin E.-K. and Yoshino K. (2005) “Spectrally segmented principal component analysis of hyperspectral imagery for mapping invasive plant species “
    連結:
  39. Wen, G. and Wang,R. (2000). "Automatic extraction of main roads from aerial remote sensing images." Ruan Jian Xue Bao/Journal of Software 11(7): 957-964.
    連結:
  40. Wen, X.-P., Hu, G.-D.,Yang, X.-F. (2009). "Simulation experiments on adjacency effect of satellite remote sensing pixels." Hongwai Yu Haomibo Xuebao/Journal of Infrared and Millimeter Waves 28(1): 46-49+65.
    連結:
  41. Xiao, H. and Zhang, X. (2008). "Comparison studies on classification for remote sensing image based on data mining method." WSEAS Transactions on Computers 7(5): 552-558.
    連結:
  42. Zhang, L., Zhang, L.,Tao, D., Huang, X. (2011). "A multifeature tensor for remote-sensing target recognition." IEEE Geoscience and Remote Sensing Letters 8(2): 374-378.
    連結:
  43. Zhong, Y.-F. and Zhang, L.-P. (2010). "Initialization methods for remote sensing image clustering using K-means algorithm." Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics 32(9): 2009-2014.
    連結:
  44. Zhou, S. M., Li, H. X.,Xu, L. D. (2003). "A variational approach to intensity approximation for remote sensing images using dynamic neural networks." Expert Systems 20(4): 163-170.
    連結:
  45. Zhang, Y., Chen, J. M.,Miller, J. R.,Noland, T. L. (2008). "Leaf chlorophyll content retrieval from airborne hyperspectral remote sensing imagery." Remote Sensing of Environment 112(7): 3234-3247.
    連結:
  46. Zou, W., Chi, Z.,Lo, K. C. (2008). "Improvement of image classification using wavelet coefficients with structured-based neural network." International Journal of Neural Systems 18(3): 195-205.
    連結:
  47. Zhang, T. Y., and Suen, C. Y.,(1984) “A Fast Parallel Algorithm for Thinning Digital Patterns,” Communications of the ACM, vol. 27, no. 3, pp. 236-239.
    連結:
  48. 中央氣象局,(2006), http://www.cwb.gov.tw/V7/index.htm 。
  49. 中央大學橋梁中心
  50. 國家太空中心,(2006), http://www.nspo.narl.org.tw/tw/ 。
  51. 梁正育,(2005),「應用橋樑管理系統探討南投縣信義鄉、水里鄉橋梁災損原因」,國立中興大學土木工程學系,碩士論文,臺中。
  52. 陳怡睿,謝舜傑,陳信達,(2005),「應用知識庫分類法判釋SPOT衛星影像坡地崩塌之研究」,臺灣地理資訊學會年會暨學術研討會論文集,臺中。
  53. 曾忠一,(1988),「大氣衛星遙測學」,渤海堂。
  54. 卓威辰,(2010),” "利用影像處理進行遙測影像的河道偵測與醫學影像的血管偵測",國立中央大學遙測科技學位學程研究所,碩士論文,中壢。
  55. Guarino, I. and Guerriero, A. (2006). "Grid technology for remote sensing images management." WSEAS Transactions on Computers 5(9): 1957-1963.
  56. Huang, G.-R., Hu, H.-P.Tian,F.-Q.(2003). "Flood level forecast model for tidal channel based on the radial basis function-artificial neural network." Shuikexue Jinzhan/Advances in Water Science 14(2): 158-162.
  57. Hong, R., Chen, R.,Hong, E.,Xu, Y. (1999). "Improving the recognition efficiency of optical pattern recognition system by using the artificial neural network technique." Jiguang Zazhi/Laser Journal 20(5): 32-33, 35.
  58. Inglada, J. and Michel, J. (2009). Qualitative spatial reasoning for high-resolution remote sensing image analysis, 445 Hoes Lane / P.O. Box 1331, Piscataway, NJ 08855-1331, United States, Institute of Electrical and Electronics Engineers Inc.
  59. Liang, L., Yang, M.-H.,Li, Y.-F. (2010). "Hyperspectral remote sensing image classification based on ICA and SVM algorithm." Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis 30(10): 2724-2728.
  60. Li, S., Tan, H.,Wang, K.,Xiao. C.,Xie, R.,Gao, S. (2009). "Research progress in wheat grain protein content monitoring using remote sensing." Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering 25(2): 302-307
  61. McQueary, W. B. (1994). "R&D required for remote sensing." Sea Technology 35(11).
  62. Man,Cybern.,vol.29,no.1,pp.149-157.
  63. Qin, J., Cao, Y.Geng, J. (2010). "Evaluation model for damage extent of roads in Wenchuan earthquake-stricken areas based on remote sensing information." Xinan Jiaotong Daxue Xuebao/Journal of Southwest Jiaotong University 45(5): 768-774.
  64. R. O. Duda and P. E. Hart,(1973), “Pattern Classification and Science Analysis”, New York: Wiley.
  65. Ren, J., Guo, L.,Li, G. (2005). "Improving scene image classification with multi-class SVMs." Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University 23(3): 295-298.
  66. Shangguan, Z.-C., Li, S.-J.,Zhao, J.-Z. (2006). "Evolutionary artificial neural network for forecasting slope stability." Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University 27(SUPPL): 92-96.
  67. Shanahan, J. F., Schepers, J. S.,Francis,D. D.,Varvel, G, E.,Wilhelm, W. W.,Tringe, J. M.,Schlemmer, M. R.,Major, D. J. (2001). "Use of remote-sensing imagery to estimate corn grain yield." Agronomy Journal 93(3): 583-589.
  68. Song, X., Wang, J.,Huang, W.,Yan, G.,Chang, H. (2009). "Monitoring spatial variance of winter wheat growth and grain quality under variable-rate fertilization conditions by remote sensing data." Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering 25(9): 155-162.
  69. Song, Y., Wan, Y.,Chen, P.,Chen, X. (2005). "Simulation model for classification of remote sensing images by SOM neural networks." Journal of Computational Information Systems 1(4): 827-833.
  70. Wang, M.-Y., Wu, P.,Xia, S.-R. (2005). "Microarray data classification based on artificial neural network ensembles." Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science) 39(7): 971-975.
  71. Wasowski, R. J. (1991). "Some ethical aspects of international satellite remote sensing." Photogrammetric Engineering and Remote Sensing 57(1): 41-48.
  72. Weber, K., Ropertz, A.,Lamp, T. (2003). "Optical remote sensing in Europe: A UV-DOAS case study." EM: Air and Waste Management Association''s Magazine for Environmental Managers: 26-31.
  73. Wang, J.-L. and Jiang, B. (2005). "Using fuzzy artificial neural network to evaluate the mine structure." Zhongguo Kuangye Daxue Xuebao/Journal of China University of Mining and Technology 34(5): 609-612.
  74. Xu, X., Wang, J.,Huang, W., Li, C.,Yang, X.,Gu, X. (2009). "Estimation of crop yield based on weight optimization combination and multi-temporal remote sensing data." Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering 25(9): 137-142.
  75. Yin, W., Zhang, J.,Huang, S. (1999). "Algorithm for air-bag actuation based on artificial neural network." Qinghua Daxue Xuebao/Journal of Tsinghua University 39(11): 73-75.
  76. Zhang, J., Guo, W.,Yai, F. (2007). "Study on vegetation water content estimating model based on remote sensing technique." Yingyong Jichu yu Gongcheng Kexue Xuebao/Journal of Basic Science and Engineering 15(1): 45-53.
  77. Zhai, L., Tang, X.,Zhang, G.,Zhu, X. (2009). "Remote sensing image compression quality assessment and its application." Wuhan Daxue Xuebao (Xinxi Kexue Ban)/ Geomatics and Information Science of Wuhan University 34(3): 289-292.
  78. Zhang, X., Shu, Y.,Yan, J.,Liu, N. (1997). "Passive IR remote sensing and auto-discrimination alarm system for pollution clouds." Jiguang Yu Hongwai/Laser and Infrared 27(5): 277-279.
  79. Zhang, Z., Gao, J.,Zhong, Q.,Li, S. (1997). "Application of artificial neural network on diagnosis of cold brittle fracture." Cailiao Gongcheng/Journal of Materials Engineering(5): 28-30.
  80. Zheng, Y.-G., Wang, P.,Ma, J.,Zhang, H.-B. (2005). "Remote sensing image classification based on BP neural network model®." Transactions of Nonferrous Metals Society of China (English Edition) 15(SPEC. ISS.1): 232-235.
Times Cited
  1. 邱兆偉(2014)。利用圖形處理器加速 K-Means 影像分群之研究。中興大學土木工程學系所學位論文。2014。1-41。 
  2. 呂景羣(2014)。應用影像辨識技術於橋梁裂縫之研究。中央大學營建管理研究所學位論文。2014。1-79。