Title

二氧化鈦分散於海綿狀碳化矽氧化鋁載體及其光降解效率的研究

Translated Titles

TITANIUM DIOXIDE COATED ON SPONGE-SHAPED SiC, Al2O3 AND THEIR PHOTOCATALYTIC PERFORMANCE

Authors

吳弘舜

Key Words

網狀結構 ; 觸媒載體 ; 碳化矽 ; 二氧化鈦 ; 聚氨酯海綿 ; TiO2 ; Poly-urethane sponge ; SiC

PublicationName

大同大學材料工程學系所學位論文

Volume or Term/Year and Month of Publication

2011年

Academic Degree Category

碩士

Advisor

林永仁

Content Language

繁體中文

Chinese Abstract

本研究用聚氨酯(PU)海綿為模板製備成碳化矽、氧化鋁、酚醛樹酯碳作為觸媒載體,以溶膠凝膠法和二氧化鈦粉末(P25)含浸法將二氧化鈦(TiO2)披覆在載體上,分別製備成TiO2/SiC、TiO2/Al2O3 及TiO2/C 載體觸媒。另外將P25 粉末摻雜氮以增加在可見光波段的吸收。藉由SEM 觀察不同載體表面,利用XRD 研究二氧化鈦與載體的結晶型態,UV-ViS 測量能隙變化,並進行紫外光及可見光催化亞甲基藍水溶液,分析載體光觸媒的亞甲基藍降解率。實驗結果發現,三種二氧化鈦粉末在紫外光下以P25 降解亞甲基藍降解率最佳,而製備出的海綿狀碳化矽載體表面呈凸起狀,披覆TiO2 於碳化矽之P25/SiC 載體觸媒有最高的亞甲基藍降解率,碎屑狀solgel/SiC 因為受光面積大於網狀,使降解亞甲基藍降解率優於網狀solgel/SiC 載體觸媒,同時因為內電子傳遞效應使降解亞甲基藍降解率也優於solgel粉末。另外藉由氮摻雜改質P25 粉末,可提高光觸媒在可見光下的吸收。

English Abstract

Poly-urethane sponge was used as templates to fabricate porous SiC,Al2O3 and phenolic-resin derived carbon. These pourous ceramic were then coated with sol-gel TiO2 and TiO2 powder(P25) to form TiO2/SiC,TiO2/Al2O3 and TiO2/C supported photo-catalysts. P25 powder was also doped with N in attempt to increase the adsorption of visible light. Surface morphology was observed in SEM, Crytal structure was identified with XRD, photo-catalysts performance was evaluated by the degradation of methylene blue solution. The result showed that:P25-TiO2/SiC has the best methylene blue degradation performance. Among the supported TiO2 catalysts. In addition, P25 is the better powder-form photocatalyst than the sol-gel derived. After N-doping , P25 can be increased in the adsorption of visible light.

Topic Category 工程學院 > 材料工程學系所
工程學 > 工程學總論
Reference
  1. 2. Christian, M.M. and P.J.A. Kenis, Ceramic microreactors for on-site hydrogen
    連結:
  2. Journal of Catalysis, 1988. 114(1): p. 176-185.
    連結:
  3. 4. 詹益瑞, Preparation of Visible Light Active Photocatalyst AgIn5S8-ZnS Thin
    連結:
  4. 5. Mills, A. and S.L. Hunte, An overview of semiconductor photocatalysis.
    連結:
  5. Journal of Photochemistry and Photobiology-Chemistry Section, 1997. 108(1):
    連結:
  6. 8. 唐崇耀, Synthesis and photocatalytic reaction of titania nanoporous materials.
    連結:
  7. 9. Wold, A., Photocatalytic properties of titanium dioxide (TiO2). Chemistry of
    連結:
  8. 11. Hoffmann, M.R., et al., Environmental applications of semiconductor
    連結:
  9. activity of Fe---TiO2 thin films prepared by sol-gel dip coating. Materials
    連結:
  10. 15. Anderson, C. and A.J. Bard, An improved photocatalyst of TiO2/SiO2 prepared
    連結:
  11. calcination temperature on the photocatalytic activity of commercial TiO2 for
    連結:
  12. photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol:
    連結:
  13. chemical evidence for electron and hole transfer between coupled
    連結:
  14. semiconductors. Journal of Photochemistry and Photobiology A: Chemistry,
    連結:
  15. 18. Shifu, C., et al., The preparation of coupled WO3/TiO2 photocatalyst by ball
    連結:
  16. milling. Powder technology, 2005. 160(3): p. 198-202.
    連結:
  17. 19. Zaleska, A., et al., Preparation and photocatalytic activity of boron-modified
    連結:
  18. 20. Akpan, U. and B. Hameed, The advancements in sol-gel method of doped-TiO2
    連結:
  19. 21. Zhang, X. and Q. Liu, Preparation and characterization of titania
    連結:
  20. 23. Shi, J.W., et al., Influence of Fe3+ and Ho3+ co-doping on the photocatalytic
    連結:
  21. physical and photocatalytic properties of titania. Journal of Photochemistry
    連結:
  22. 26. Xin, B., et al., Effect of surface species on Cu-TiO2 photocatalytic activity.
    連結:
  23. 27. Colmenares, J., et al., Synthesis, characterization and photocatalytic activity
    連結:
  24. degradation of organic pollutants. Journal of Photochemistry and
    連結:
  25. 29. Asahi, R., et al., Visible-light photocatalysis in nitrogen-doped titanium oxides.
    連結:
  26. nitrogen-doped titanium dioxides with visible light photocatalytic activity.
    連結:
  27. Journal of Solid State Chemistry, 2008. 181(1): p. 130-136.
    連結:
  28. 33. Sathish, M., et al., Synthesis, characterization, electronic structure, and
    連結:
  29. photocatalytic activity of nitrogen-doped TiO2 nanocatalyst. Chemistry of
    連結:
  30. materials, 2005. 17(25): p. 6349-6353.
    連結:
  31. absorption ability and photocatalytic oxidation activity of various interstitial
    連結:
  32. Journal of hazardous materials, 2011.
    連結:
  33. 36. 王士庭, Materials Characteristics and Photodegradation of Visible
    連結:
  34. Responded TiO2-xNx Photocatalysts. 大同大學,材料工程學系碩士論文,
    連結:
  35. 37. Matatov-Meytal, Y.I. and M. Sheintuch, Catalytic abatement of water
    連結:
  36. 38. Acheson, E.G., Carborundum: Its history, manufacture and uses. Journal of
    連結:
  37. the Franklin Institute, 1893. 136(4): p. 279-289.
    連結:
  38. 42. Li, F., et al., Surface effect of natural zeolite (clinoptilolite) on the
    連結:
  39. activated carbon fibers and its photodegradation of methylene blue. China
    連結:
  40. Particuology, 2004. 2(2): p. 76-80.
    連結:
  41. hazardous materials, 2007. 143(1-2): p. 257-263.
    連結:
  42. 45. Byrne, J., et al., Immobilisation of TiO2 powder for the treatment of polluted
    連結:
  43. orange II by TiO2 catalysts supported on adsorbents. Catalysis Today, 2004.
    連結:
  44. 50. de Souza, W.F., et al., Catalytic oxidation of sulfur and nitrogen compounds
    連結:
  45. 51. Houas, A., et al., Photocatalytic degradation pathway of methylene blue in
    連結:
  46. 52. 謝明宏, Synthesis, Characterization and Photocatalytic Reaction of
    連結:
  47. 53. Spurr, R.A. and H. Myers, Quantitative analysis of anatase-rutile mixtures
    連結:
  48. 54. Phanikrishna Sharma, M.V., V. Durga Kumari, and M. Subrahmanyam, TiO2
    連結:
  49. supported over porous silica photocatalysts for pesticide degradation using
    連結:
  50. 56. Di Valentin, C., et al., N-doped TiO2: Theory and experiment. Chemical
    連結:
  51. 57. Dressler, M., et al., Burnout behavior of ceramic coated open cell
    連結:
  52. 58. Sun, B. and P.G. Smirniotis, Interaction of anatase and rutile TiO2 particles in
    連結:
  53. photocatalytic oxidation of methylethylketone in the gas phase. Catalysis
    連結:
  54. 1. Hosseini, S., et al., Immobilization of TiO2 on perlite granules for
  55. photocatalytic degradation of phenol. Applied Catalysis B: Environmental,
  56. 2007. 74(1-2): p. 53-62.
  57. production from high temperature steam reforming of propane {. Lab Chip,
  58. 2006. 6: p. 1328-1337.
  59. 3. Ledoux, M.J., et al., New synthesis and uses of high-specific-surface SiC as a
  60. catalytic support that is chemically inert and has high thermal resistance.
  61. Film by Reactive DC/RF co-Sputtering. 中原大學,化學工程學系碩士學位論
  62. 文, 九十六年.
  63. p. 1-36.
  64. 6. Linsebigler, A.L., G. Lu, and J.T. Yates Jr, Photocatalysis on TiO2 surfaces:
  65. principles, mechanisms, and selected results. Chemical Reviews, 1995. 95(3):
  66. p. 735-758.
  67. 7. 魏松煙, Characteristization of TiO2 Nanoparticles. 逢甲大學,電子工程學系
  68. 碩士班碩士論文, 九十五年.
  69. 中原大學,化學系碩士學位論文, 九十四年.
  70. materials, 1993. 5(3): p. 280-283.
  71. 10. 胡興中, 觸媒原理與應用. 八十年: 高立圖書有限公司.
  72. photocatalysis. Chemical Reviews, 1995. 95(1): p. 69-96.
  73. 12. Neren Okte, A. and O. YIlmaz, Photodecolorization of methyl orange by
  74. yttrium incorporated TiO2 supported ZSM-5. Applied Catalysis B:
  75. Environmental, 2008. 85(1-2): p. 92-102.
  76. 13. Rengaraj, S., et al., Preparation, characterization and application of Nd-TiO2
  77. photocatalyst for the reduction of Cr (VI) under UV light illumination. Applied
  78. Catalysis B: Environmental, 2007. 77(1-2): p. 157-165.
  79. 14. Sonawane, R., B. Kale, and M. Dongare, Preparation and photo-catalytic
  80. chemistry and physics, 2004. 85(1): p. 52-57.
  81. 70
  82. by a sol-gel synthesis. The Journal of Physical Chemistry, 1995. 99(24): p.
  83. 9882-9885.
  84. 16. Colon, G., M. Hidalgo, and J. Navio, Effect of ZrO2 incorporation and
  85. salicylic acid and Cr (VI) photodegradation. Applied Catalysis A: General,
  86. 2002. 231(1-2): p. 185-199.
  87. 17. Serpone, N., et al., Exploiting the interparticle electron transfer process in the
  88. 1995. 85(3): p. 247-255.
  89. TiO2 under UV and visible light. Applied Catalysis B: Environmental, 2008.
  90. 78(1-2): p. 92-100.
  91. photocatalysts. Applied Catalysis A: General, 2010. 375(1): p. 1-11.
  92. photocatalyst co-doped with boron, nickel, and cerium. Materials Letters,
  93. 2008. 62(17-18): p. 2589-2592.
  94. 22. Liu, C., et al., Characterization and activity of visible-light-driven TiO2
  95. photocatalyst codoped with nitrogen and cerium. Journal of Solid State
  96. Chemistry, 2008. 181(4): p. 913-919.
  97. activity of TiO2. Materials chemistry and physics, 2007. 106(2-3): p. 247-249.
  98. 24. Wilke, K. and H. Breuer, The influence of transition metal doping on the
  99. and Photobiology A: Chemistry, 1999. 121(1): p. 49-53.
  100. 25. Liu, G., et al., The preparation of Zn2+-doped TiO2 nanoparticles by sol-gel
  101. and solid phase reaction methods respectively and their photocatalytic
  102. activities. Chemosphere, 2005. 59(9): p. 1367-1371.
  103. Applied surface science, 2008. 254(9): p. 2569-2574.
  104. of different metal-doped titania systems. Applied Catalysis A: General, 2006.
  105. 306: p. 120-127.
  106. 71
  107. 28. Chatterjee, D. and S. Dasgupta, Visible light induced photocatalytic
  108. Photobiology C: Photochemistry Reviews, 2005. 6(2-3): p. 186-205.
  109. Science, 2001. 293(5528): p. 269.
  110. 30. Wan, L., et al., Improved optical response and photocatalysis for N-doped
  111. titanium oxide (TiO2) films prepared by oxidation of TiN. Applied surface
  112. science, 2007. 253(10): p. 4764-4767.
  113. 31. Yu, H., et al., Preparation of Nitrogen-doped TiO2 Nanoparticle Catalyst and
  114. Its Catalytic Activity under Visible Light*. Chinese Journal of Chemical
  115. Engineering, 2007. 15(6): p. 802-807.
  116. 32. Peng, F., et al., Synthesis and characterization of substitutional and interstitial
  117. 34. Ananpattarachai, J., P. Kajitvichyanukul, and S. Seraphin, Visible light
  118. N-doped TiO2 prepared from different nitrogen dopants. Journal of hazardous
  119. materials, 2009. 168(1): p. 253-261.
  120. 35. Kuo, Y.L., et al., A Study of Parameter Setting and Characterization of
  121. Visible-Light Driven Nitrogen-modified Commercial TiO2 Photocatalysts.
  122. 2009.
  123. pollutants. Industrial & engineering chemistry research, 1998. 37(2): p.
  124. 309-326.
  125. 39. Van Dijen, F. and R. Metselaar, Chemical reaction engineering aspects of a
  126. rotary reactor for carbothermal synthesis of SiC. Journal of the European
  127. Ceramic Society, 1989. 5(1): p. 55-61.
  128. 40. 林博文, 陶瓷技術手冊(下). Vol. 第761. 民國八十二年: 中國粉末冶金協
  129. 會.
  130. 41. Pirkanniemi, K. and M. Sillanpaa, Heterogeneous water phase catalysis as an
  131. 72
  132. environmental application: a review. Chemosphere, 2002. 48(10): p.
  133. 1047-1060.
  134. photocatalytic activity of TiO2. Applied surface science, 2005. 252(5): p.
  135. 1410-1416.
  136. 43. Fu, P., Y. Luan, and X. Dai, Preparation of TiO2 photocatalyst anchored on
  137. 44. Liu, S., X. Chen, and X. Chen, A TiO2/AC composite photocatalyst with high
  138. activity and easy separation prepared by a hydrothermal method. Journal of
  139. water. Applied Catalysis B: Environmental, 1998. 17(1-2): p. 25-36.
  140. 46. Bhattacharyya, A., S. Kawi, and M. Ray, Photocatalytic degradation of
  141. 98(3): p. 431-439.
  142. 47. Mascolo, G., et al., Photocatalytic degradation of methyl red by TiO2:
  143. Comparison of the efficiency of immobilized nanoparticles versus
  144. conventional suspended catalyst. Journal of hazardous materials, 2007.
  145. 142(1-2): p. 130-137.
  146. 48. Yamashita, H., et al., TiO2 photocatalyst loaded on hydrophobic Si3N4 support
  147. for efficient degradation of organics diluted in water. Applied Catalysis A:
  148. General, 2008. 350(2): p. 164-168.
  149. 49. Portela, R., et al., Selection of TiO2-support: UV-transparent alternatives and
  150. long-term use limitations for H2S removal. Catalysis Today, 2007. 129(1-2): p.
  151. 223-230.
  152. from diesel fuel. Applied Catalysis A: General, 2009. 360(2): p. 205-209.
  153. water. Applied Catalysis B: Environmental, 2001. 31(2): p. 145-157.
  154. Titanium-modified Mesoporous Materials. 國立中央大學,化學學系碩士論
  155. 文, 2009.
  156. with an X-ray diffractometer. Analytical Chemistry, 1957. 29(5): p. 760-762.
  157. solar light: Part 2. Silica prepared using acrylic acid emulsion. Journal of
  158. 73
  159. hazardous materials, 2010. 175(1-3): p. 1101-1105.
  160. 55. O'regan, B. and M. Gratzel, A low-cost, high-efficiency solar cell based on
  161. dye-sensitized colloidal TiO2 films. Nature, 1991. 353(6346): p. 737-740.
  162. Physics, 2007. 339(1-3): p. 44-56.
  163. polyurethane (PU) sponges. Journal of the European Ceramic Society, 2009.
  164. 29(16): p. 3333-3339.
  165. aqueous photooxidation. Catalysis Today, 2003. 88(1): p. 49-60.
  166. 59. Keller, V. and F. Garin, Photocatalytic behavior of a new composite ternary
  167. system: WO3/SiC-TiO2. Effect of the coupling of semiconductors and oxides in
  168. Communications, 2003. 4(8): p. 377-383.