透過您的圖書館登入
IP:3.133.156.156
  • 學位論文

手性金屬有機配位化合物之介電性質調控研究

Investigation of Guest-Dependent Dielectric Behavior of Chiral Metal-Organic Frameworks and Supramolecular Compounds

指導教授 : 林英智
共同指導教授 : 呂光烈(Kuang-Lieh Lu)
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文研究以手性含氮有機配子與過渡金屬鹽反應,設計合成九個新型手性金屬有機配位化合物(Metal-Organic Frameworks, MOFs)。化合物{[Zn2(L-trp)2(bpe)2(H2O)2]•2H2O•2NO3}n (1)、 {[Co(L-trp)(bpe)(H2O)]•H2O•NO3}n (2) 、 {[Co(L-trp)(bpa)(H2O)]•H2O•NO3}n (3) 為二維手性結構,具有(4,4)矩形孔洞狀拓撲。化合物[Zn2(Hbbim)2(bbim)]n (4)為二維蜂巢(honeycomb)結構,具有(6,3)拓樸網狀特徵。化合物{{[Mn(bbim)(H2bbim)]•CH3OH}{[Mn(bbim)(H2bbim)]•H2O}}n (5) 是一維zig-zag 鍊狀結構,化合物[Mg(phen)(bdc)]n (6) 是不含客分子且是罕見cds-型三維有機金屬配位聚合物。化合物{[Ni2(bbim)(H2bbim)4]•2CH3COO•CH3CN}2 (7)、化合物{[Ni(H2bbim)3]•2Cl•2H2O} (8) 及化合物D/L-{[Cr(Hbbim)3]•3H2O} (9)藉由客分子間氫鍵形成超分子。另人驚奇的是,外消旋化合物D/L-{[Cr(Hbbim)3]•3H2O} (9)是非常獨特的結構,含有一組4員環螺旋槳狀的水團簇呈外消旋而聚在一起,其中兩兩互為鏡像的螺旋物,彼此互穿而形成三維結構,具有103網狀具srs拓樸特徵。到目前為止,內類似化合物9含有相同手性之鏡像異構物,進行掌性分子辨識和自組裝,在超分子的領域尚未被報導過。 本論文研究詳細探討新合成化合物的介電性質,發現化合物1及4為低介電物質。化合物1的介電常數值 (κ = 2.53,1 MHz),相近似於沸石咪唑骨架結構物(ZIFs)。其獨特陰離子能夠調控物質的介電數值,發現當陰離子的極化增加時,其介電常數會隨之增大。此外,化合物1為良好的發光材料(為546 nm的綠光)和非線性光學材料,產生二次倍頻 (second harmonic generation, SHG)的效能約SiO2的兩倍。令人值得注意的是,化合物4的介電常數低於已報導過的ZIFs結構物,由於它是一個層狀結構物,且各層間並不存在水分子,它是一個非常有用的低介電及高度熱穩定的物質。調變頻率進行介電性的研究,顯示化合物7和8的介電常數(κ)和介電損耗有明顯差異,可能由於結構和所含的溶劑分子的類型不同所造成。本論文在物質結構及相關基礎的研究,發現客分子之調控,對於高介電係數或低介電係數材料之設計,可作為重要之參考。

並列摘要


A series of chiral metal-organic frameworks (MOFs) and supramolecular compounds were synthesized by reacting nitrogen containing ligands with transition metal salts and their dielectric behavior was investigated. The structures of these compounds range from one dimensional zig-zag chains to three dimensional structures. Compounds 1~4 were found to be chiral, with two dimensional structures. Compounds {[Zn2(L-trp)2(bpe)2(H2O)2]•2H2O•2NO3}n (1), {[Co(L-trp)(bpe)(H2O)]•H2O•NO3}n (2) and {[Co(L-trp)(bpa)(H2O)]•H2O•NO3}n (3) displayed a common framework with a rectangle- like (4,4) topology, whereas compound [Zn2(Hbbim)2(bbim)]n (4) has a honeycomb structure with a (6,3) connected net. Compound {{[Mn(bbim)(H2bbim)]•CH3OH}{[Mn(bbim)(H2bbim)]• H2O}}n (5) was found to be a one dimensional coordination polymer with a zig-zag chain structure. Compound [Mg(phen)(bdc)]n (6) was a guest free 3D compound and serves as a rare example of a cds-type framework. Compounds {[Ni2(bbim)(H2bbim)4]•2CH3COO•CH3CN}2 (7), {[Ni(H2bbim)3]•2Cl•2H2O} (8) and D/L-{[Cr(Hbbim)3]•3H2O} (9), were supramolecular compounds forming extended structures via extensive hydrogen-bonding with the guest molecules. The racemic compound D/L-{[Cr(Hbbim)3]•3H2O} (9) had a very unique molecular-propeller structure, in which the D/L-molecular propellers were glued together by rare water tetrahedrons. Astonishingly, the packing arrays formed by the enantiomeric propellers of one chirality were interpenetrated with those of the opposite chirality to form specific 3D supramolecular arrays with 103 nets and srs topology. This chiral discrimination and self-assembly between enantiomers of the same chirality on a supramolecular level has never been reported to date. We investigated the dielectric properties of the compounds prepared in this thesis. Compounds 1 and 4 were found to be third generation low-κ dielectric materials. The dielectric constant (κ = 2.53 at 1 MHz) of 1 was found to be comparable to zeolitic imidazolate frameworks (ZIFs). Its unique anion controlled dielectric behavior is demonstrated for the first time, in which the dielectric constant increases with increasing polarization of the anion. In addition, compound 1 was found to be a good luminescent material (with a green emission at 546 nm) and a modest non-linear optical material in which the second harmonic generation (SHG) efficiency was about twice that of SiO2. Remarkably, the κ value of compound 4 was found to be even lower than the reported ZIFs, owing to the presence of an interlayer free space and the absence of guest molecules. It is a very useful low-κ dielectric material which is highly thermally stable. Frequency dependent dielectric studies for compounds 7 and 8 revealed a significant difference in the value of dielectric constant (κ) and dielectric loss for the two compounds owing to differences in structure and the type of solvent molecules. This fundamental, structure-based study provides insights into the creation of both high and low-κ materials with the judicious selection of guest molecules.

並列關鍵字

Metal-Organic Frameworks dielectric chiral

參考文獻


36. C.-M. Leu, Y.-T. Chang and K.-H. Wei, Chem. Mater., 2003, 15, 3721‒3727.
6. (a) T. T. Luo, H. L. Tsai, S. L. Yang, Y. H. Liu, R. D. Yadav, C. C. Su, C. H. Ueng, L. G. Lin and K. L. Lu, Angew. Chem., Int. Ed., 2005, 44, 6063−6067; (b) N. W. Ockwig, O. D. Friedrichs, M. O’Keeffe and O. M. Yaghi, Acc. Chem. Res., 2005, 38, 176−182; (c) G. Ferey, Chem. Soc. Rev., 2008, 37, 191−214; (d) M. J. Zaworotko, Nature, 2008, 451, 410−411; (e) D. J. Tranchemontagne, J. L. Mendoza-Cortes, M. O’keefe and O. M. Yaghi, Chem. Soc. Rev., 2009, 38, 1257−1283; (f) C. B. Aakeroy, N. R. Champness and C. Janiak, CrystEngComm, 2010, 12, 22−43; (g) M. O’Keeffe and O. M. Yaghi, Chem. Rev., 2012, 112, 675−702.
8. C. H. Lee, H. Y. Huang, Y. H. Liu, T. T. Luo, G. H. Lee, S. M. Peng, J. C. Jiang, I. Chao and K. L. Lu, Inorg. Chem., 2013, 52, 3962-3968.
16. (a) J. Han, C. W. Yau, C. W. Chan and T. C. W. Mak, Cryst. Growth Des., 2012, 12, 4457−4465; (b) M. H. Pham, G. T. Vuong, F. G. Fontaine and T. O. Do, Cryst. Growth Des., 2012, 12, 3091−3095; (c) J. H. Qin, L. F. Ma, Y. Hu and, L. Y. Wang, CrystEngComm, 2012, 14, 2891–2898; (d) S. N. Zhao, S. Q. Su, X. Z. Song, M. Zhu, Z. M. Hao, X. Meng, S. Y. Song and H. J. Zhang, Cryst. Growth Des., 2013, 13, 2756−2765; (e) Z. Zhang, J. F. Ma, Y. Y. Liu, W. Q. Kan and J. Yang, Cryst. Growth Des., 2013, 13, 4338−4348; (f) X. Zhang, L. Hou, B. Liu, L. Cui, Y. Y. Wang and B. Wu, Cryst. Growth Des., 2013, 13, 3177−3187.
24. Y.-Z. Tang, X.-F. Huang, Y.-M. Song, P. W. H. Chan and R.-G. Xiong, Inorg. Chem., 2006, 45, 4868‒4870.

延伸閱讀