透過您的圖書館登入
IP:3.139.240.192
  • 學位論文

運用致冷晶片散熱裝置於嵌入式工業電腦之研究

Thermoelectric cooling module application to embedded Industrial PC

指導教授 : 謝振榆
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


3C數位產品在科技越來越進步的現今,散熱是產品設計舉足輕重的一環,現行主要的數位產品散熱仍多以笨重的散熱片或吵雜的散熱風扇作為主要致冷源進行散熱。為使產品更趨輕量化及節省能源,故以市場上廣泛被運用的嵌入式工業電腦做為研究目標,期許致冷晶片的快速降溫能力能為產品的散熱帶來效能上的提升! 此次的研究系使用單.雙顆致冷晶片對嵌入式工業電腦進行實驗,同時加入致冷晶片在有風扇及無風扇的狀況下評估系統內外部各零件的溫度變化用以評估整體系統的運作穩定性及效能的評估。 研究後所得,以致冷晶片作為冷源為系統進行散熱並無法解決系統散熱狀況,原因為所選用的嵌入式工業電腦機構設計造成冷源無法確實傳遞致使效果不彰,但若有對整體系統進行結構考量對單一零件或區域進行散熱仍是可有效提升散熱效果。

並列摘要


In recent years,3C digital products technical has progressed rapidly.Radiating plays an important role in product design to ensure product efficiency. Current digital products are still using heat sink or cooling fan as main cooling source for product radiating.In order to make digital products more slim and save energy,so using most popular embedded industrial computer as research target to see if thermoelectric cooling module’s fast cooling ability could enhance industrial PC functionality and perform more stable. The experiments applied single and dual thermoelectric cooling module to embedded industrial PC,and mounted with Fan and without fan to thermoelectric cooling chip as experiment parameter to evaluate system individual component temperature and performance.And based on temperature variety status to evaluate system Operational stability and effectiveness. As experiment result,using thermoelectric cooling module as cooling source for industrial system is not able to solve system thermal issue.The reason is that the constraint of embedded industrial PC selected in this research,that the original mechanical structure design are not able to transmitted cold source completely to each component inside of the system. However,if consider overall system Structural and phase into single part or area will be able to improve the system radiating effect.

參考文獻


[8] 胡原麟,2014,“致冷晶片在冷熱風扇之應用”, 國立虎尾科技大學
電性能”,國立成功大學機械工程學系碩士班。
[1] 丁瑞顯,2010,“手持式工業電腦之散熱設計最佳化”,私立大同大
[4] 柯鴻彬,2013,“熱電致冷晶片在烘碗機上的應用” ,國立虎尾科技
[5] 何冠佑,2012,“奈米間隙下熱電效應與其增強方法之研究”,國立

延伸閱讀