透過您的圖書館登入
IP:3.142.35.75
  • 學位論文

苯胺衍生物合成及其於氧化鋅染敏太陽能電池之共敏化研究

Synthesis of triphenylamine derivatives for ZnO dye-sensitized solar cells by co-sensitization

指導教授 : 張淑美

摘要


本研究探討在氧化鋅薄膜上利用共敏化概念來提升光電轉換效率,合成三支以D-π-A系統為主的有機非金屬染料,其結構以三苯胺衍生物作為π共軛橋樑,三支染料不同之處分別是推電子基為氧烷基(W3)、推電子基為環氧烷基(W4)、而將W4之拉電子基修飾成3-羧甲基羅丹寧(J1),將上述三支有機染料和市售釕金屬染料N719 應用於染敏太陽能電池加以探討,並且找尋適當染料使用共敏化法加以提升效率。以市售氧化鋅奈米顆粒(20 nm),使用網印製程製備多孔性薄膜作為工作電極,本研究採用逐步浸泡法進行工作電極的共敏化,先浸泡N719再浸泡合成的有機染料,經由染料浸泡時間的改變,探討出最適化條件,研究不同浸泡時間對染料吸附量與電池元件效率的影響。第一部分利用W4和N719染料在吸收光譜區範圍不同來達成互補為條件進行共敏化,利用此條件能讓光譜吸收範圍增加,使用N719及W4應用於染敏電池光電轉換效率分別為3.78 %及3.36 %,經共敏化法使效率提升至4.36 %;第二部分因J1元件的Jsc值較N719來的高,而Voc部分則J1元件較N719低,因此使用J1和N719染料進行共敏化,電池元件光電轉換效率可達4.67%,與單一染料電池元件的最高光電效率3.27% (N719)與 3.26% (J1)相較,有顯著的提升。共敏化可增加氧化鋅表面的覆蓋率以及染料吸收範圍的互補,進而使光電流增加,提升整體光電轉換效率。

並列摘要


This study adopted a co-sensitization approach to enchance the performance of ZnO dye-sensitized Solar cells (DSSCs). Using a simple donor-π-conjugated-acceptor (D-π-A) type free-metal organic dyes W3, W4 and J1 are synthesized with triphenylamine moiety worked as the π-linker. W3 and W4 have an alkoxy group and an ethylene oxide group respectively as donor, and J1 has Rhodanine-3-acetic acid as acceptor. The DSSCs performance of the synthesized dyes compared with Ruthenium-based dye (N719) have been investigated. Working electrodes were fabricated with commercial ZnO nanoparticles (about 20 nm in size) by screen printing. A stepwise adsorption approach for co-sensitization was employed with N719 as the primary sensitizer and organic dye (W4 or J1) as the secondary sensitizer. ZnO electrodes were first dipped into N719 dye solution, then the gaps in the N719 layer subsequently filled with the W4 or J1 dye. The effects of dipping times and dye loading on device performance were investigated. The results show that the optimal co-sensitization condition was N719 (120 mins) + W4 (90 mins). The resulting co-sensitized device reached a conversion efficiency of 4.36 %, which is a remarkable improvement over the individually sensitized N719 (3.78 %) and W4 (3.36 %) devices. The device made of N719 (150 mins) + J1 (150 mins) system yielded conversion efficiency = 4.67 %. This performance is superior to that of either of the individual device made from N719 ( = 3.27 %) and J1 ( = 3.27 %) under similar fabrication and evaluation conditions.

參考文獻


[63] 張羽成,新型有機染料的合成及其在染料敏化太陽能電池上的應用,碩士論文,國立台北科技大學,台北,九十七學年度第二學期。
[15] 林佳霖,含有疏水烷類修飾基團有機染料之合成及其於染料敏化太陽能電池之應用,碩士論文,國立台北科技大學有機高分子研究所,台北,一百學年度第二學期
[9]王宏嘉,新型有機光敏化染料的合成及其於染料敏化太陽能電池之應用,碩士論文,國立台北科技大學,台北,一百學年度第二學期。
[1] United Nations Development Programme (UNDP), World Energy Assessment, New York, 2000.
[4] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, and M. Graetzel, “Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II)charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes,” J. Am. Chem. Soc., vol. 115, 1993, pp. 6382-6390.

延伸閱讀