透過您的圖書館登入
IP:3.15.193.254
  • 學位論文

二氧化矽-聚苯胺核層結構微米粒子之製備及其在電化學防腐蝕及電化學感測器之應用與研究

Preparation of SiO2–PANI Core-shell Micro-particles and Their Application Studies on Electrochemical Anticorrosion and Electrochemical Sensor

指導教授 : 葉瑞銘

摘要


本論文主要研究以電化學為工具來探討核殼材料應用在做為“防蝕塗料”及 “感測器”上之可行性。 首先,針對二氧化矽-聚苯胺微米粒子之製備與性質進行探討,冺用溶凝-凝膠法製備含有苯胺官能基之二氧化矽模板,以固態核磁共振儀 (SS-NMR) 証實二氧化矽模版製備完成,再以化學氧化聚合法將高分子聚苯胺聚合於模板上,成功製備出二氧化矽-聚苯胺微米粒子,初步以掃描式電子顯微鏡 (SEM)、傅冺葉轉換紅外線光譜儀 (FT-IR) 及紫外光-可見光光譜儀 (UV-Visable) 分冸可得知二氧化矽-聚苯胺微米粒子之表面性貌及基本結構鑑定,以穿透式電子顯微鏡 (TEM) 確認其核層微米粒子之結構,並冺用四點探針電阻儀測量其導電度落在10-3 S/cm 範圍,以及冺用循環伏特電位儀,得知其二氧化矽-聚苯胺微米粒子具有可逆之氧化還原特性,進而將此微米粒子應用於防腐蝕與抗靜電性質。 首先,將此微米粒子導入高分子基材聚苯乙烯中形成複合材料,以循環伏特電位儀 (CV) 與表面阻抗量測 (Surface Resistance),証實隨著微米粒子的添加,其防腐蝕性質與抗靜電性質皆有所提升;再以掃描式電子顯微鏡 (SEM) 與X射線光電子能譜儀 (XPS) 針證實複材所形成鈍性氧化層結構;另外冺用氣體透過率分析 (GPA) 與水氣透過率分析 (VPA) 証實此複合材料具有阻隔空氣及水氣之性質,根據上述檢測,證實成功製備出同時 II 具有防腐蝕、抗靜電及阻隔性質等多功能之複合材料。 其次,則是改變不同氧化劑,冺用四氯金酸 (HAuCl4) 以化學聚合法製備二氧化矽-聚苯胺-金粒子之複合材料,以廣角X-ray繞射分析 (XRD)、X射線光電子能譜儀 (XPS)與能量散佈分析儀 (EDS) 證實金粒子確實修飾於二氧化矽-聚苯胺核層微米粒子中,同樣使用循環伏特電位儀 (CV) 與四點探針電阻儀量測,得知隨著金粒子之修飾,電活性與導電度皆隨之提升,進而可將此性質應用於電化學感測器之偵測,再以循環伏特電位儀 (CV) 針對葡萄糖中所含常見之抗壞血酸 (Ascorbic acid, AA) 與多巴胺 (Dopamine, DA),證實此複材可偵測抗壞血酸及多巴胺,而以偵測抗壞血酸有較好的靈敏度與線性值,R2 = 0.9912。

並列摘要


This dissertation is focused mainly on the preparation of core-shell micro-particles and developed their potentially application in anticorrosion coatings and sensor through the electrochemical measurements. It should be noted that the SiO2-Polyaniline (SP) core-shell microparticles were synthesized by conventionally base-catalyzed sol-gel process. First of all, SiO2 particles anchored aniline functional groups of ~ 800 nm was prepared followed by characterized by solid-state nuclear magnetic resonance (SS-NMR). Subsequently, SP was prepared by performing the chemically oxidative polymerization of aniline monomers in the presence of aniline anchored SiO2 particles. The as-prepared SP particles of ~ 1050 nm was obtained and followed by characterized by scanning electron microscopy (SEM), Fourier-transform infrared (FT-IR) spectroscopy and ultraviolet - visible spectroscopy (UV-Visible). The thickness of polyaniline shell can be estimated ~ 120 nm by transmission electron microscopy (TEM). For the physical property studies, electrochemical cyclic voltammetric (CV) and four-point probe technique were employed to evaluate the electro-activity and electrical conductivity of as-prepared core-shell micro-particles. IV For the “anti-static” corrosion protection application studies, electrochemical corrosion measurements of DBSA-doped PS composite coatings containing different loading of core-shell particles was performed through the Tafel plot observations. Incorporation of core-shell micro-particles not only increased the gas barrier of corresponding composite membranes but also introduced the antistatic properties into the composites. Moreover, gas permeability analysis (GPA) and water vapor transmission rate analysis (VPA) of as-prepared PS composite membranes were demonstrated that incorporation of core-shell particles may effectively increased the gas (especially O2) barrier properties, which supporting the anticorrosion data. The redox capability of PANI resulted from the shell component of core-shell micro-particles may induced the formation of passivation oxide layers, which can be identifized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). PS composites containing 10 wt-% of DBSA-doped core-shell particles was found to reveal electrical resistance of ~ 109 /sq, which meet the requirement of anti-static scale. For second part associated with the electrochemical sensor application, gold (III) chloride trihydrate (HAuCl4) was used to instead of oxidant (i.e.,ammonium persulfate) by chemical polymerization of aniline monomers in V the presence of aniline anchored SiO2 particles to give series of gold decorated SiO2-PANI core-shell microspheres (GDSP). The morphology, electro-activity, electrical conductivity and thermal properties of as-prepared GDSP were confirmed by scanning electron microscopy (SEM), cyclic valtammetric (CV) analysis, four-point probe technique and thermogravimetric analysis (TGA), respectively. It should be noted that the gold nanoparticles attached onto the core-shell micro-particles can be confirmed by use of wide-angle X-ray diffraction analysis (XRD), X-ray photoelectron spectroscopy (XPS) and energy dispersive spectrometer (EDS); Detection of Ascorbic acid (AA) and Dopamine (DA) can be performed by carrying out the electrochemical cyclic voltammetric (CV) studies of GDSP-modified Pt electrode with better sensitivity and linearity.

參考文獻


[194] 張志弘, 崑山科技大學電子工程系碩士論文 (2007).
[1] B. M. Novak, Adv. Mater. (1993) 5, 422.
[4] D. C. Lee, L. W. Jang, J. Appl. Polymer. Sci. (1996) 61, 1117.
[8] A. G. Green, A. E. Woodhead, J. Chem. Soc. Trans. (1910) 97, 2388.
[9] L. Langer, Solid State Commun. (1978) 26, 839.

被引用紀錄


張王昇(2014)。含4,4'-二苯乙烯二羧酸之奈米孔洞金屬有機骨架的合成,活化與氣體吸附研究〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201400332
張藝馨(2013)。含磺酸官能基之金屬有機骨架合成與性質研究〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201300255

延伸閱讀