Title

各種密集盤狀膠體粒子之電泳現象研究

Translated Titles

Electrophoresis Behavior of the Various Disk Shape Colloids in a Concentrated Suspension

DOI

10.6342/NTU.2009.02440

Authors

陳怡吟

Key Words

電泳現象 ; 盤狀 ; 雙凹圓盤狀 ; Cassini方程式 ; 形狀參數 ; electrophoresis behavior ; disk ; biconcave ; Cassini equation ; shape parameter

PublicationName

臺灣大學化學工程學研究所學位論文

Volume or Term/Year and Month of Publication

2009年

Academic Degree Category

碩士

Advisor

李克強

Content Language

繁體中文

Chinese Abstract

本研究探討各類盤狀膠體粒子在密集系統中的電泳行為,利用Cassini方程式中的形狀參數來描述球形粒子逐漸變形成圓盤狀,乃至雙凹圓盤狀的過程,並採用假性光譜法為數值方法,在弱外加電場下,將部分相互耦合的電場、流場及離子濃度場方程式線性化,再利用牛頓-拉福生疊代法求得系統之穩態解。 研究結果發現,隨著形狀參數增加,盤狀粒子電泳動度的球形比(λ)愈來愈小,表示形狀參數愈大,愈偏離球形的計算結果。此外,若固定表面電位,在低κa時,盤狀粒子會產生局部的電位梯度疏密不一,以雙凹圓盤狀為例,在粒子凹陷處的電位梯度較疏,代表此處的累積電荷較少,造成電力較弱。

Topic Category 工學院 > 化學工程學研究所
工程學 > 化學工業
Reference
  1. 2. Hunter, R., Foundations of Colloid Science. 1989: Clarendon Press.
    連結:
  2. 4. Van de Ven, T., Colloidal Hydrodynamics. 1989: Academic Press.
    連結:
  3. 9. Henry, D. The Cataphoresis of Suspended Particles. 1931.
    連結:
  4. 10. Overbeek, J., Quantitative Interpretation of the Electrophoretic Velocity of Colloids. Advances in Colloid Science, 1950. 3: p. 97-134.
    連結:
  5. 12. Wiersema, P.H., Calculation of the Electrophoretic Mobility of a Spherical Colloid Particle. Journal of Colloid and Interface Science, 1966. 22: p. 78.
    連結:
  6. 13. O'Brien, R.W., Electrophoretic Mobility of a Spherical Colloidal Particle. Faraday Transactions 2, 1978. 74: p. 1607.
    連結:
  7. 14. Lee, E., Electrophoretic Mobility of a Sphere in a Spherical Cavity. Journal of Colloid and Interface Science, 1998. 205(1): p. 65.
    連結:
  8. 15. Lee, E., Electrophoretic Mobility of a Concentrated Suspension of Spherical Particles. Journal of Colloid and Interface Science, 1999. 209(1): p. 240.
    連結:
  9. 16. Lee, E., Electrophoresis of a Non-conducting Newtonian Drop of Low Electrical Potential Normal to a Plane. Chemical Engineering Science, 2006. 61(14): p. 4550.
    連結:
  10. 17. Chiang, C., Electrophoresis of a Spherical Dispersion of Polyelectrolytes in a Salt-free Solution. Journal of Physical Chemistry, The, 2006. 110(3): p. 1490.
    連結:
  11. 18. Hsu, J.P., Boundary Effect on Electrophoresis: finite cylinder in a cylindrical pore. Journal of Colloid and Interface Science, 2005. 283(2): p. 592.
    連結:
  12. 19. Davison, S. and K. Sharp, Boundary Effects on the Electrophoretic Motion of Cylindrical Particles: Concentrically and Eccentrically-positioned Particles in a Capillary. Journal of Colloid and Interface Science, 2006. 303(1): p. 288-297.
    連結:
  13. 20. Ye, C., Electrophoretic Motion of a Circular Cylindrical Particle in a Circular Cylindrical Microchannel. Langmuir, 2002. 18(23): p. 9095.
    連結:
  14. 21. Hsu, J.P., Electrophoresis of a Spheroid in a Spherical Cavity. Langmuir, 2003. 19(19): p. 7469.
    連結:
  15. 22. YOON, B. and S. KIM, Electrophoresis of Spheroidal Particles. Journal of Colloid and Interface Science, 1989. 128(1): p. 275-288.
    連結:
  16. 23. Hsu, J.P., K. Chao-Chung, and K. Ming-Hong, Electrophoresis of a Charge-regulated Toroid Normal to a Large Disk. Electrophoresis, 2008. 29(2): p. 348-57.
    連結:
  17. 24. Wolken, J.J., The Structure of the Chloroplast. Annual Review of Plant Physiology, 1959. 10(1): p. 71.
    連結:
  18. 25. Sarvari, E. and P. Nyitrai, Separation of Chlorophyll-protein Complexes by Deriphat Polyacrylamide Gradient Gel Electrophoresis. Electrophoresis, 1994. 15(1).
    連結:
  19. 26. Preiss, S., The Multiple Pigment-proteins of the Photosystem I Antenna*. Photochemistry and Photobiology, 1993. 57(1): p. 152.
    連結:
  20. 27. Peter, G. and J. Thornber, Biochemical Evidence that the Higher Plant Photosystem II Core Complex is Organized as a Dimer. Plant and cell physiology, 1991. 32(8): p. 1237-1250.
    連結:
  21. 28. Bassi, R., The Chlorophyll-a/b Proteins of Photosystem II in Chlamydomonas Reinhardtii. Planta, 1991. 183(3).
    連結:
  22. 29. Allen, K.D., Resolution of 16 to 20 ChlorophyII-protein Complexes Using a Low lonic Strength Native Green Gel System. Analytical Biochemistry, 1991. 194(1): p. 214.
    連結:
  23. 32. Lewington, J. and M. Day, A Rapid Electrophoretic Method for the Measurement of Plasmid Copy Number. Letters in Applied Microbiology, 1986. 3(6): p. 109-112.
    連結:
  24. 33. Anderson, D. and L. McKay, Simple and Rapid Method for Isolating Large Plasmid DNA from Lactic Streptococci. Applied and Environmental Microbiology, 1983. 46(3): p. 549-552.
    連結:
  25. 36. Projan, S., S. Carleton, and R. Novick, Determination of Plasmid Copy Number by Fluorescence Densitometry. Plasmid, 1983. 9(2): p. 182.
    連結:
  26. 37. Fung, Y.C.B., Theory of the Sphering of Red Blood Cells. Biophysical Journal, 1968. 8(2): p. 175.
    連結:
  27. 38. Phillips, D.R. and M. Morrison, Exposed Protein on the Intact Human Erythrocyte. Biochemistry, 1971. 10(10): p. 1766-71.
    連結:
  28. 40. Higgins, J.A., N.T. Florendo, and R.J. Barrnett, Localization of Cholesterol in Membranes of Erythrocyte Ghosts. Journal of Ultrastructure Research, 1973. 42(1): p. 66-81.
    連結:
  29. 41. Canham, P.B., The Minimum Energy of Bending as a Possible Explanation of the Biconcave Shape of the Human Red Blood Cell. Journal of Theoretical Biology, 1970. 26(1): p. 61-81.
    連結:
  30. 42. Deuling, H.J. and W. Helfrich, Red Blood Cell Shapes as Explained on the Basis of Curvature Elasticity. Biophysical Journal, 1976. 16(8): p. 861-8.
    連結:
  31. 44. Ada, G.L., Effect of Hæmagglutinating Viruses on the Electrophoretic Mobility of Human Erythrocytes. Nature, 1950. 165(4188): p. 189.
    連結:
  32. 45. Kitagawa, S., O. Nozaki, and T. Tsuda, Study of the Relationship between Electrophoretic Mobility of the Diabetic Red Blood Cell and Hemoglobin A1c by Using a Mini-cell Electrophoresis Apparatus. Electrophoresis, 1999. 20(12): p. 2560-5.
    連結:
  33. 46. Lu, W.H., W.H. Deng, S.T. Liu, T.B. Chen, and P.F. Rao, Capillary Electrophoresis of Erythrocytes. Analytical Biochemistry, 2002. 314: p. 194-198.
    連結:
  34. 47. San Martin, E., Modeling Normaland Altered Human Erythrocyte Shapesbya New Parametric Equation: Application tothe Calculationof Induced Transmembrane Potentials. Bioelectromagnetics, 2006. 27(7): p. 521.
    連結:
  35. 48. Eremina, E., J. Hellmers, Y. Eremin, and T. Wriedt, Different shape models for erythrocyte: Light scattering analysis based on the discrete sources method. Journal of Quantitative Spectroscopy and Radiative Transfer, 2006. 102(1): p. 3-10.
    連結:
  36. 49. Dibiasio, A., Effect of the Shape of Human Erythrocytes on the Evaluation of the Passive Electrical Properties of the Cell Membrane. Bioelectrochemistry, 2005. 65(2): p. 163.
    連結:
  37. 50. Kuwabara, S., The Forces Experienced by Randomly Distributed Parallel Circular Cylinders or Spheres in a Viscous Flow at Small Reynolds Numbers. Journal of the Physical Society of Japan, 1959. 14(4): p. 527.
    連結:
  38. 53. Happel, J. and H. Brenner, Low Reynolds Number Hydrodynamics: with special applications to particulate media. 1983: Kluwer Academic Print on Demand.
    連結:
  39. 1. Masliyah, J., Electrokinetic Transport Phenomena. 1994: Alberta Oil Sands Technology and Research Authority.
  40. 3. Hunter, R., Zeta Potential in Colloid Science: principles and applications. 1981: Academic Press New York.
  41. 5. Russel, W., The Dynamics of Colloidal Systems. 1987: The University of Wisconsin Press.
  42. 6. Dukhin, S., A. Mistetsky, and B. Deriagin, Surface and Colloid Science. 1974: Wiley-Insterscience.
  43. 7. Smoluchowski, M., Handbuch der Elektrizitat und des Magnetismus. Band II, Barth-Verlag, Leipzig, 1921.
  44. 8. Huckel, E., The Electrophoresis of Spherical Colloid. Phys. Zeit, 1924. 25: p. 204-210.
  45. 11. Booth, F., The Electroviscous Effect for Suspensions of Solid Spherical Particles. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences (1934-1990), 1950. 203(1075): p. 533-551.
  46. 30. Delepelaire, P. and N. Chua, Electrophoretic Purification of Chlorophyll a/b-protein Complexes from Chlamydomonas Reinhardtii and Spinach and Analysis of their Polypeptide compositions. Journal of Biological Chemistry, 1981. 256(17): p. 9300-9307.
  47. 31. Campbell, M. and S. Farrell, Biochemistry. 1991: Saunders College Publishing Philadelphia.
  48. 34. Weisblum, B., M. Graham, T. Gryczan, and D. Dubnau, Plasmid Copy Number Control: Isolation and Characterization of High-copy-number Mutants of Plasmid pE194. Journal of Bacteriology, 1979. 137(1): p. 635-643.
  49. 35. Meyers, J., D. Sanchez, L. Elwell, and S. Falkow, Simple Agarose Gel Electrophoretic Method for the Identification and Characterization of Plasmid Deoxyribonucleic Acid. Journal of Bacteriology, 1976. 127(3): p. 1529-1537.
  50. 39. Murphy, J.R., Erythroctye Metabolism. VI. Cell Shape and the Location of Cholesterol in the Erythrocyte Membrane. Journal of Laboratory and Clinical Medicine, The, 1965. 65: p. 756-74.
  51. 43. Angelov, B. and I.M. Mladenov, On the Geometry of Red Blood Cell. Geometry, integrability and quantization. Varna: Bulgaria, 1999.
  52. 51. Shilov, V., N. Zharkikh, and Y. Borkovskaya, Theory of non-equilibrium electrosurface phenomena in concentrated disperse systems. 1. Application of non-equilibrium thermodynamics to cell model of concentrated dispersions. Colloid J, 1981. 43(3): p. 434-438.
  53. 52. Canuto, C., M. Hussaini, A. Quarteroni, and T. Zang, Spectral Methods in Fluid Dynamics. 1988: Springer New York.