Title

淺層崩塌災害潛勢及影響範圍初步研究

Translated Titles

Preliminary Study on the Potential and Affected Areas of Shallow Landslide Disaster

Authors

陳琮文

Key Words

淺層崩塌 ; 潛勢分析 ; 影響範圍 ; 無人飛行載具系統 ; Shallow landslide ; potential analysis ; affected area ; Unmanned aircraft system

PublicationName

暨南大學土木工程學系學位論文

Volume or Term/Year and Month of Publication

2019年

Academic Degree Category

碩士

Advisor

王國隆

Content Language

繁體中文

Chinese Abstract

南投縣內山多平原少其中不乏地形陡峭、地質破碎之土地,常因颱風、豪雨及地震等事件,誘發各類型坡地災害,如崩塌、地滑與土石流甚至是複合式或二次災害的發生,嚴重威脅居民之生命與財產,而坡地災害也影響聚落的居住環境之安全性。 本研究針對淺層崩塌,蒐集整理國內外淺層崩塌之相關文獻與法規,並統計淺層崩塌之特性與挑選出潛勢因子完成土石流潛勢溪流集水區內淺層崩塌之潛勢分析,並使用環境潛勢值公式評估本研究預先挑選出的39處淺層崩塌之潛勢等級。 本研究比較顆粒流模擬法、流向演算法與急傾斜地法的三種淺層崩塌影響範圍劃設方式,套用至本研究已調查之現地淺層崩塌並加以驗證,其中顆粒流模擬法因不易受地形限制且沒有人為判斷之因素為適用性最高之淺層崩塌影響範圍劃設方法。而本研究完成預先選定39處淺層崩塌其中31處現地調查,利用無人載具影像配合GPS產製數值地表模型,再使用攝影測量軟體去除地上物建立數值地形。後續更將光達數值地形以及UAS產製數值地形,進行前後期地形比對,評估淺層崩塌坡高及最遠堆積長度之關係並將淺層崩塌坡高與實際現況、顆粒流模擬法、流向演算法與急傾斜地法之最遠影響範圍反算出fahrböschung angle分別為34.39°、37.11°、38.17°與34.73°,急傾斜地法與實際條件較為符合,但劃設過程可能受人為因素影響而產生相同條件影響範圍不一致的情形。

English Abstract

The mountain area in Taiwan is mostly high mountains, geology was destroyed seriously and vulnerability. Typhoons, heavy rains and earthquakes usually induced multiple types disaster on slopeland, such as landslide and debris flow. These slope disasters not only threats to lives and property of residents, but also affects the security of the settlement’s living environment. This study focuses on shallow landslide of Nantou. Statistics factors of shallow landslide was established for shallow landslide model in potential debris flow torrent basin. In this study, three methods of delineating shallow landslide affected areas are compared with each other, including particle flow simulation method, flow direction algorithm and the steep slope method. These delineating shallow landslide affected areas are applied to existed shallow landslide for verification. Investigation of 31 shallow landslide sites were executed with unmanned vehicle products such as orthophotos, digital surface model and digital elevation model. Aerial borne LiDAR and UAS produced DEM are used to compare pre- and post-event. The relationship between the shallow landslide slope height and the maximum runout is discussed in this study. The shallow landslide slope height, maximum runout of three methods of delineating shallow landslide affected areas, and field condition’s Fahrböschung angles are calculated. The steep slope method is suitable for filed condition. However, the mapping process and influence area may be affected by human factors.

Topic Category 科技學院 > 土木工程學系
工程學 > 土木與建築工程
Reference
  1. 1. ArcGIS(2018),http://desktop.arcgis.com/zh-cn/arcmap/
  2. 2. Baeza, C. and Corominas, J. (2001),"Assessment of shallow landslide susceptibility by means of multivariate statistical techniques." ,Earth Surface Processes and Landforms 26(12): 1251-1263.
  3. 3. Barlow, J and Gilham, J. (2017),“Stability analysis of chalk sea cliffs using UAV photogrammetry.”, 19th EGU General Assembly.
  4. 4. Caine, N. (1980) , ” Th Geografiska Annaler. Series A, Physical Geography Vol. 62,No. 1/2 , pp. 23-27.
  5. 5. Chang, K.T., Chiang, S.H., and Hsu, M.L. (2007), ”Modeling typhoon-and earthquake-induced landslides in a mountainous watershed using logistic regression ”, Geomorphology, vol. 89, p.335-347.
  6. 6. Chau, K.T. , Wong, R.H.C. and Wu, J.J., (2002), “Coefficient of restitution and rotational motions of rockfall impacts. Int. J. Rock Mech.”, Min. Sci. 39: 69–77.
  7. 7. d’Oleire-Oltmanns, S. , Marzolff, I. , Peter, K. D. , Ries, J. B. (2012), “Unmanned aerial vehicle (UAV) for monitoring soil erosion in Morocco. “ , Remote Sensing 4: 3390–3416.
  8. 8. Desmet, P. J. J. and Govers, G. (1996), “Comparison of routing algorithms for digital elevation models and their implications for predicting ephemeral gullies” , Int. J. Geogr. Inf. Syst., 10, pp311–331.
  9. 9. Domaas, U. (1994),” Geometrical methods of calculating rockfall range “,Oslo. NGI, 585910-1.21 pp.
  10. 10. Dorren, L.K.A. and Heuvelink, G.B.M. (2004), ”Effect of support size on the accuracy of a distributed rockfall model.”, Int. J. Geog. Inf. Sci. 18: 595-609.
  11. 11. ecorisQ(2015) ,” Rockyfor3D (v5.2) manual ”.
  12. 12. Endreny, T. A. and Wood, E. F. (2003), ”Maximizing spatial congruence of observed and DEM-delineated overland flow networks” , Int. J. Geogr. Inf. Sci., 17, pp699–713.
  13. 13. Erskine, R., Green, T., Ramirez, J., and MacDonald, L.(2006), “Comparison of grid-based algorithms for computing upslope contributing area” , Water Resour. Res.,42.
  14. 14. Evans, S.G. and Hungr, O. (1993), “ The assessment of rockfall hazard at the base of talus slopes” , Canadian Geotechnical Journal, v. 30, pp. 620-636.
  15. 15. Fonstad, M. A. , Dietrich, J. T. , Courville, B. C. , Jensen, J. L. , Carbonneau, P. E. (2013) , “Topographic structure from motion: A new development in photogrammetric measurement. ”, Earth Surface Processes and Landforms 38(4): 421–430.
  16. 16. Gamma, P. (2000) , ” dfwalk-Ein Murgang-Simulationsprogramm zur Gefahrenzonierung” , Geographisches Institut der Universitぴat Bern (in German).
  17. 17. Giannecchini, R. (2006) , “Relationship between rainfall and shallow landslides in the southern Apuan Alps (Italy).”, Nat. Hazards Earth Syst. Sci., 6, pp357–364.
  18. 18. GINTEC(2016),「G10衛星定位儀使用手冊」。
  19. 19. Habib, P. (1977), “Note sur le rebondissement des blocs rocheux. In: Proc. Meet. on Rockfall Dynamics and Protective Works.”, Bergamo, Italy. ISMES Publ. 90: pp. 123-125
  20. 20. Harp, E. L. , Michael, J. A. , and William,T. L.(2006) , “Shallow-Landslide Hazard Map of Seattle” , U.S. Geological Survey Open-File Report 2006–1139.
  21. 21. Harwin, S. and Lucieer, A. (2012) , ”Assessing the accuracy of georeferenced point clouds produced via multi-view stereopsis from unmanned aerial vehicle (UAV) imagery”, Remote Sensing 4: 1573–1599.
  22. 22. Heim, A.( 1881),”Die Gebirge: Vortrag”.
  23. 23. Horton, P. , Jaboyedoff , M. , Rudaz, B. , Zimmermann, M. ,“Flow-R, a model for susceptibility mapping of debris flows and other gravitational hazards at a regional scale ”, Nat. Hazards Earth Syst. Sci., 13, pp869–885.
  24. 24. Huggel, C., Kääb, A., Haeberli, W., and Krummenacher, B.(2003) ,”Regional-scale GIS-models for assessment of hazards from glacier lake outbursts: evaluation and application in the Swiss Alps” , Nat. Hazards Earth Syst. Sci., 3, pp647–662.
  25. 25. Hungr O., Evans SG(1989), “Engineering Aspects of Rockfall Hazards in Canada”.
  26. 26. Jaboyedoff, M. and Labiouse, V.(2011), ”Technical Note: Preliminary estimation of rockfall runout zones” , Nat. Hazards Earth Syst. Sci.,11,pp819–828.
  27. 27. James, M. R. and Robson, S. (2012) ”Straightforward reconstruction of 3d surfaces and topography with a camera: Accuracy and geoscience application.” , Journal of Geophysical Research 117: F03017.
  28. 28. Jenson, S. and Domingue, J. (1988) Extracting Topographic Structure from Digital Elevation Data for Geographic Information System Analysis. Photogrammetric Engineering and Remote Sensing, 54, 1593-1600.
  29. 29. Johnson, A. M. and Rodine, J. R.(1984) , “Debris Flow, in: Slope Instability” ,edited by: Brunsden, D. and Prior, D. B., John. Wiley and Sons,New York, USA, pp257–361.
  30. 30. Kelcey, J. and Lucieer, A. (2012) , ”Sensor correction of a 6-band multispectral imaging sensor for UAV remote sensing.”, Remote Sensing 4: 1462–1493.
  31. 31. Kritikos, T. and Davies, T. (2015) , "Assessment of rainfall-generated shallow landslide/debris-flow susceptibility and runout using a GIS-based approach: application to western Southern Alps of New Zealand." , Landslides 12(6): 1051-1075.
  32. 32. Laboratory Design and Supply(2017), “Information Bulletin/ public-Building Code”.
  33. 33. Lucieer, A. , Turner, D. , King, D. H., Robinsonb, S. A. (2014), ”Using an Unmanned Aerial Vehicle (UAV) to capture microtopography of Antarctic moss beds.“, International Journal of Applied Earth Observation and Geoinformation. 27 (Part A): 53–62.
  34. 34. Montrasio, L. and Valentino, R.(2008) ,” A model for triggering mechanisms of shallow landslides” , Nat. Hazards Earth Syst. Sci., 8,pp 1149–1159.
  35. 35. Moore, I. D. , Grayson, R. B. , Ladson, A. R. (1991) , “Digital terrain modelling: A review of hydrological, geomorphological, and biological applications.”, Hydrological Processes · Vol-5:pp3-30.
  36. 36. Muenier, P., Hovius, N., Haines, J. (2008), ” Topographic side effects and the locationof earthquake induced landslides” , Earth and Planetary Science Letters v. 275, p. 221-232.
  37. 37. O’Callaghan, J. F. and Mark, D. M (1984), ”The extraction of drainage networks from digital elevation data, Comput.”, Vision Graph, 28,pp328 –344.
  38. 38. Onofri, R. and Candian, C.(1979), ”Indagine sui limiti di massima invasione dei blocchi rocciosi franati durante il sisma del Friuli del 1976.”, Reg. Aut. Friuli-Venezia-Giulia, CLUET, 42
  39. 39. Perla, R., Cheng, T. T., and McClung, D. M.(1980) , “A two-parameter model of snow-avalanche motion” , J. Glaciol., 26,pp 197–207.
  40. 40. Pfeiffer T.J. and Bowen T.D. (1989), ”Computer simulation of rockfalls. Bull. Ass. Eng. Geol. XXVl: 135-146.
  41. 41. Pichler, B. , Hellmich, Ch. and Mang, H.A., (2005), “Impact of rocks onto gravel - design and evaluation of experiments.”, Int. J. Impact Eng. 31: 559–578.
  42. 42. Ruhe, R. V. (1975), ”Geomorphology: geomorphic processes and surficial geology”.
  43. 43. Sidle, R. C. and Terry, P. K. K.(1992) , “Shallow landslide analysis in terrain with managed vegetation” , Erosion, Debris Flows and Environment in Mountain Regions (Proceedings of the Chengdu Symposium, July 1992). IAHS Publ. no. 209,pp 289-298.
  44. 44. Tahar, K. N. (2015) , ”Multi rotor UAV at different altitudes for slope mapping studies.” , The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-1/W4.
  45. 45. Tarboton, D. G.(1997), “A new method for the determination of flow directions and upslope areas in grid digital elevation models” , Water Resour. Res., 33, pp309–319.
  46. 46. Travelletti, J. , Delacourt, C. , Allemand, P. , Maleta, J.-P. , Schmittbuhla, J. , Toussainta, R. , Bastarda, M. (2012) , ”Correlation of multi-temporal ground-based optical images for landslide monitoring: Application, potential and limitations.” , ISPRS Journal of Photogrammetry and Remote Sensing 70: 39–55.
  47. 47. Turner, D. , Lucieer, A. and Watson, C. (2013) , ”An automated technique for generating georectified mosaics from ultra-high resolution Unmanned Aerial Vehicle (UAV) imagery , based on Structure from Motion (SfM) point clouds.” , Remote Sensing 4: 1392–1410.
  48. 48. Varnes, D. J. (1978) , “Slope Movement Types and Processes.” , Landslides:Analysis and Control, pp 11-33.
  49. 49. Westoby, M. , Brasington, J. , Glasser, N. F. , Hambreya, M.J. , Reynoldsc, J. M. (2012) , “structure- from-motion’ photogrammetry: A low-cost” , effective tool for geoscience applications, Geomorphology 179: 300–314, 2012.
  50. 50. Wieczorek, G. F. , Morrissey, M. M. , Iovine, G. , Godt, J. (1999) ,”Rock-fall Potential in the Yosemite Valley” , USGS.
  51. 51. Wieczorek, G. F. , Morrissey, M. M. , Iovine, G., Godt, J. (1998) , ”Rock-fall Hazards in the Yosemite Valley” , USGS.
  52. 52. Wu, S.S. (1984), “Rockfall evaluation by computer simulation.“ , Transportation Research Record, Transp. Res. Board, Washington, DC, Nr. 1031: pp. 1-5.
  53. 53. Zevenbergen, L. W. , Thorne , C. R. (1987), “Quantitative Analysis of Land Surface Topography. Land surface topography” ,Earth Surface Processes and Landforms 12(1):47 – 56.
  54. 54. 內政部(1997),「台內營字第八六九○一六五號令增訂建築設計施工編第十三章山坡地建築第二百六十條至第二百六十八條」。
  55. 55. 日本國土交通省(2017),「土砂災害警戒区域等ズれんペ土砂災害防止対策ソ推進ズ関エペ法律施行令」。
  56. 56. 日本國土交通網,http://www.mlit.go.jp/
  57. 57. 水保局(2005),「水土保持手冊」。
  58. 58. 台北市政府工務處大地工程處(2012),「台北市環境地質資料庫宣傳手冊」。
  59. 59. 交通部臺灣區國道新建工程局(2000),「國道五號公路台東太麻里段工程設計暨配合工作初步設計階段大地工程調查紀實報告」。
  60. 60. 岩手縣縣土整備部(2015),「日本岩手縣土砂災害防止相關基礎調查手冊」。
  61. 61. 林朝棨 (1957),「臺灣省通志稿卷一土地志.地理篇-第一冊地形」,臺灣省文獻委員會,共 424 頁。
  62. 62. 林裕翔 (2008),「土石流發生潛勢─區別分析的擬合與預測」,國立臺灣大學土木工程學研究所碩士論文。
  63. 63. 林耀宗、闕文鏈、顏怡和(2015),「應用無人飛行載具(UAV)辦理1/1000 地形圖測繪實例探討」,中華技術,第107期,第128-139頁。
  64. 64. 邱皓政 (2000),「量化研究與統計分析:SPSS中文視窗版資料分析範例解析」,台北市:五南圖書。
  65. 65. 國家災害防救科技中心,「災害事件簿查詢展示系統」,https://den.ncdr.nat.gov.tw/Info。
  66. 66. 莊漢鑫(2012),「考慮空間與雨量變異之土石流影響因子潛勢分析」,國立臺灣大學土木工程研究所碩士論文。
  67. 67. 陳天健、吳嘉俊、翁孟嘉、謝坤宏、王建智(2009),「莫拉克颱風荖濃溪坡地災害調查」,地工技術,第 122 期,p.13-20。
  68. 68. 陳建新、 陳嬑璇、譚志豪、冀樹勇、蘇泰維(2013),「台灣西部地區降雨促崩潛勢特性分析」,中華水土保持學報, 44(2): 179-189。
  69. 69. 陳琮文、李苡宣、林俊廷、王國隆(2018),「UAS坡地調查與崩塌判釋及以顆粒流模擬淺層崩塌行為分析之研究」,第14屆(2018)岩盤工程研討會。
  70. 70. 費立沅(2009),「臺灣坡地災害與地質敏感區的關係」,地質,第28卷,,第1期,第16-22頁。
  71. 71. 黃志杰(2014),「應用無人載具進行邊坡調查與分析初探」,國立暨南國際大學土木工程研究所碩士論文。
  72. 72. 經濟部中央地質調查所(2003),「都會區及周緣坡地整合性環境地質資料庫建置坡地岩體工程特性調查研究計畫」。
  73. 73. 經濟部中央地質調查所(2014),南投縣之山崩與地滑地質敏感區劃定計畫書。
  74. 74. 詹孟浚和梁偉立(2014),「以坡地土壤厚度及垂直結構探討淺層崩塌潛勢區位」,中華水土保持學報, 45(2): 85-94。
  75. 75. 詹勳全、張嘉琪、陳樹群、魏郁軒、王昭堡、李桃生(2015),「台灣山區淺層崩塌地特性調查與分析」,中華水土保持學報, 46(1): 19-28。
  76. 76. 農委會水土保持局(2017),「淺層崩塌防災管理規劃與研究」。