Title

中小型埋積河谷地形特徵與地形反應之研究:以新店溪支流為例

Translated Titles

none

DOI

10.6345/THE.NTNU.DG.004.2019.A05

Authors

林文毓

Key Words

埋積河谷 ; 地形判釋 ; 數值航測 ; 流域險峻值 ; 土石流 ; 平廣溪 ; 蘇迪勒颱風 ; waste-filled valleys ; landform identification ; digital aerial photogrammetry ; Melton’s ratio ; debris flow ; Ping Guang Stream ; Typhoon Soudelor

PublicationName

臺灣師範大學地理學系學位論文

Volume or Term/Year and Month of Publication

2019年

Academic Degree Category

碩士

Advisor

沈淑敏

Content Language

繁體中文

Chinese Abstract

臺灣因地狹人稠,山區中小型溪流沿線的狹窄平緩谷床,也常被開發利用。這類谷床常是沈積物淤埋而成,暗示該集水區內較易因崩塌或土石流作用而供給大量沈積物,如不當開發很可能造成災害。若能了解此類埋積河谷的谷床地形單元分布和集水區特徵,並了解極端事件中流域發生的地形作用對谷床產生的影響,應有助於自然災害的減災。本研究以新店溪中游的平廣溪、小坑溪與磺窟溪三條支流為例,嘗試以地表幾何形態自動分類和數值航測系統判釋谷床地形單元分布,透過數值地形的分析了解各項地形特徵和潛在地形作用,並以2015年8月蘇迪勒颱風之影響來檢視極端事件造成這些中小型流域的地形再作用情形。 研究結果顯示,本研究區三條溪流之埋積谷床的寬度從8到200公尺不等,谷床地形單元以高約2-3公尺高的小階為主,其中面積較大之平廣溪的支流土石流扇發育較佳,佔據主流谷床的中游段。蘇迪勒颱風誘發研究區內的地形反應,以平廣溪主流谷床最顯著,多處被淤埋或溢淹,其他兩溪的源流和多條支流溪溝可判釋出沖蝕特徵。該些溪溝大多有歷史崩塌紀錄或埋積、土石流扇特徵,受強降雨事件驅動,發生土石流再作用。 參考周憲德(2016)推估溪流主導營力之流域險峻值(Melton’s ratio)和主流長度的界檻值,可計算得知本研究區各子集水區和小坑溪主流的主導營力均為土石流,平廣溪與磺窟溪往下游則轉為高含砂水流和洪水作用。蘇迪勒颱風之降雨強度雖可達200年一遇之程度,但降雨延時短、總降雨量有限,研究區的整體流域崩塌率並不高。平廣溪流域相對降雨最多,以致原就好發土石流之源流段和支流溪溝河道上儲存的土砂被驅動,加以主流谷床之上游與下游段邊坡發生崩塌,故使其上游段谷床被土石流掩埋、下游段受到洪水溢淹。值得提出的是,此次土石流作用的河段還包含部份理論推估的高含砂水流河段,這應該和歷次降雨事件類型與土砂供應來源具有空間偶然性有關。 本研究以位於西部麓山帶砂頁岩地層為主的三個中小型流域為例,發現蘇迪勒颱風這種短延時高強度的降雨事件,雖然沒有造成邊坡普遍性崩壞,但足以驅動支流河道的土砂下移與主流局部河段邊坡崩壞,使主流埋積谷床發生地形再作用。在臺灣山區有非常多類似形態的埋積谷床,應仍屬現生地形,若其支流溪溝或源流段儲存相當多沈積物,則表示具有較高的地形動態性,值得進一步檢視其地景特徵所暗示的災害風險。本研究也發現,由於中小型溪流的谷床多窄小,若採用數公尺精度的DEM,透過地表幾何形態自動分類工具(Geomorphon)判釋谷底的平地形態(flat),可以快速判別谷床的有無與大致分布位置,但若要進一步區劃細部的地形單元範圍,則需要逐一測試並組合形態,相當費時,故建議採數值航測人工判釋圈繪為宜。

English Abstract

Taiwan is a highly populated mountainous island. Under the extremely high demand for land, even narrow waste-filled valley bottoms have been developed. Waste-filled valleys imply landslides and debris flow happen easily and supply deposit in that watershed, improper development may cause hazard. This research attempts to develop a (semi-)automatic procedure to identify the waste-filled valleys, of which the valley beds are characterized by debris flow fans and filled deposits. Three tributaries of the Xindian River in the northern Taiwan, are chosen as the study area, including the Ping Guang, the Xiao Keng and the Huang Ku Stream. The landform element classification is firstly applied (Geomorphon) to automatically identify the landform element of the waste-filled valleys and then verified by the result of the digital aerial photogrammetry. Melton’s ratio (MR) is adopted to infer the major geomorphic processes alone the streams. On-site investigation report immediately after the major event - Typhoon Soudelor in August, 2015 is also consulted.. The results show that the width of the valley bottoms is about 8 to 200 meters and the main landform element of the valley bottom is fill terraces with scarp 2 - 3 m. Tributary debris flow fans are relatively well-developed in the Ping Guang Stream and occupy the mid-stream valley bottom. Triggered by Typhoon Soudelor, with extremely high intensity but short duration rainfall pattern, the valley bottom of the Ping Guang Stream experienced the most significant geomorphic change and the sediment transport occurred in quite few tributary channels, which are characterized by valley fill, debris flow fan or historical landslides. MR infers that the dominant geomorphic process in the upper streams and sub-catchments in the study area is debris flow, while it turns into hyper-concentration flow and sediment-laden flow in the downstream of the Ping Guang and Huang Ku stream. Short duration of Typhoon Soudelor only induced low landslides ratio in the study area. Sediments contributing into main valley, however, were probably stored in the tributary channels during the previous events. It should also be noted that debris flow extended into the hyper-concentration flow segment inferred by MR during Typhoon Soudelor along upper Ping Guang Stream. It is mainly due to the coupling of sediment supply both from the source area and landslides on the immediate valley sides. This research demonstrates the dynamic response on the valley bottoms of the lower-order drainage basins, which is not just controlled by the existing geological and geomorphic settings but also the pattern of the geomorphic-forming events.

Topic Category 人文學 > 地理及區域研究
文學院 > 地理學系
Reference
  1. 一、中文文獻
  2. 尹承遠、翁勳政、吳仁明、歐陽湘(1993)。台灣土石流之特性。工程地質技術應用研討會(V)論文集,70-90。
  3. 李錫堤(1996)。從地形學的觀點看陳有蘭溪的賀伯風災。地工技術,57,17-24。
  4. 吳佐川(1992)。台灣地區崩塌地區域特性之研究。國立臺灣大學森林學研究所碩士論文。
  5. 吳亭燁、張駿暉、劉哲欣、施虹如、張志新(2016)。極端降雨引致坡地災害對新店溪流域之衝擊與影響。災害防救科技與管理學刊,第5卷第2期,19-39。
  6. 吳輝龍、陳文福、張維訓(2004)。集水區地文特性因子與土石流發生機率間相關性之研究-以陳有蘭溪為例。中華水土保持學報,35(3),251-259。
  7. 沈淑敏、張瑞津、楊貴三(2005)。活動構造地形判釋及資料建置分析(1/2)。地震地質調查及活動斷層資料庫建置計畫,新北市:經濟部中央地質調查所。
  8. 沈淑敏、張瑞津、楊貴三(2006)。活動構造地形判釋及資料建置分析(2/2)。地震地質調查及活動斷層資料庫建置計畫,新北市:經濟部中央地質調查所。
  9. 沈淑敏、葉懿嫻、黃健政、張瑞津、劉盈劭(2007)。花東縱谷北段的土石流扇和土石流溪溝的認定。中華水土保持學報,38(4),311-324。
  10. 沈淑敏、羅佳明、王聖鐸(2017)。細緻化地質地貌特徵地圖製作研究。國家災害防救科技中心委託辦理計畫(編號:NCDR-S-106038),未出版。
  11. 林宜羣(2016)。蘇迪勒颱風後新店溪上游國有林土砂災害治理策略及作為。台灣林業,Vol.42 No.6,3-21。
  12. 林朝宗(2000)。五萬分之一臺灣地質圖新店圖幅。新北市:經濟部中央地質調查所。
  13. 林昭遠、張力仁(2000)。地文因子對土石流發生影響之研究─以陳有蘭溪為例。中華水土保持學報,31(3),227-237。
  14. 林美聆、陳彥澄(2014)。應用光達地形資料於莫拉克災後陳有蘭溪流域崩塌與土石流地質敏感地區判釋與分析。航測及遙測學刊,18(2),129-143。
  15. 周憲德(2016)。坡地土砂災害之地文因子綜整判定及現地判釋(以平廣溪集水區為例)。行政院農業委員會水土保持局創新研究計畫成果報告(編號:SWCB-105-127)。南投縣:行政院農業委員會水土保持局。
  16. 翁毓穗、沈淑敏、莊永忠(2010)。莫拉克颱風在楠梓仙溪誘發之洪水與土石流作用及其溢淹範圍的含意。中國地理學會會刊,45,59-74。
  17. 國立編譯館(1982)。地球科學名詞。臺北市:國立編譯館。
  18. 郭基賢、楊貴三(2005)。台灣地區大型崩塌地之地理特性研究。地圖:中華民國地圖學會會刊,15,103-114.
  19. 張瑞津(1997)。陳有蘭溪流域的地形環境與自然災害之關係。中國地理學會會刊,25,43-64。
  20. 張瑞津、鄧國雄、劉明錡(2000)。新店溪河階之地形學研究。臺灣師大地理研究報告,33,179-198。
  21. 張瑞津、楊貴三、沈淑敏(2002)。台灣島河階地形資料庫的建置(1/3)-北部地區。地震地質調查及活動斷層資料庫建置計畫,新北市:經濟部中央地質調查所。
  22. 張瑞津、楊貴三、沈淑敏(2003)。台灣島河階地形資料庫的建置(2/3)-南部地區。地震地質調查及活動斷層資料庫建置計畫,新北市:經濟部中央地質調查所。
  23. 張瑞津、楊貴三、沈淑敏(2004)。台灣島河階地形資料庫的建置(3/3)-東部地區。地震地質調查及活動斷層資料庫建置計畫,新北市:經濟部中央地質調查所。
  24. 張志新、王俞婷、傅鏸漩、林又青、張駿暉、劉哲欣、呂喬茵、吳啟瑞、蘇元風(2015)。2015年蘇迪勒颱風災害調查彙整報告。新北市:國家災害防救科技中心。
  25. 陳榮河、江英政(1999)。新中橫公路邊坡破壞之調查。第二屆土石流研討會論文集。
  26. 陳立淳(2013)。荖濃溪勤和地區全新世河流地形演育。國立中正大學地震研究所碩士論文。
  27. 陳宏宇、蘇定義、陳琨銘(1999)。土石流發生機制與地質環境之相關性。地工技術,74,5-20。
  28. 陳柔妃、詹瑜璋、張國楨、謝有忠(2016)。應用空載光達數值地形模型於基隆河之河流地形研究。航測及遙測學刊,21(1),1-12。
  29. 陳奕中、侯進雄、謝有忠、陳柔妃、吳若穎(2014)。高解析度空載光達資料結合地形開闊度分析於構造地形特徵之應用。航測及遙測學刊,18(2),67-78。
  30. 陳曼莉(2017)。強化新店溪水源高濁度原水操作策略之研究。中華民國自來水協會106年度研究計畫。台北市:中華民國自來水協會。
  31. 莊心凱(2012)。結合地貌主題圖層及物件式影像分析方法應用於山區氾濫原及周邊區域特徵判釋。臺灣大學土木工程學研究所碩士論文。
  32. 游繁結、陳重光(1987)。豐丘土石流災害之探討。中華水土保持學報,18(1),76-92。
  33. 游繁結、賴建信(1996)。不同粒徑組成之土石流流動特性研究。中華水土保持學報,27(3),213-222。
  34. 游繁結、連惠邦(1999)。土石流扇狀地危險區劃定之評述。地工技術,74,57-66。
  35. 彭義軒(2006)。埋積河段的分佈、轉變特性─陳有蘭溪北段支流流域的個案研究。國立臺灣師範大學地理學系碩士論文。
  36. 費立沅、紀宗吉、吳文隆、楊智堯(2012)。土石流扇狀地危險度分析案例探討。中華技術,93,124-135。
  37. 楊明德、林基源、林蔚榮、黃凱翔、吳東諺(2009)。莫拉克颱風於陳有蘭溪流域之災害調查。中華水土保持學報,40(4),345-358。
  38. 楊貴三(1988)。新店溪中游河流地形的研究。地理教育,14,85-97。
  39. 詹錢登(2000)。土石流概論。臺北市:科技圖書股份有限公司。
  40. 詹錢登(2004)。豪雨造成的土石流。科學發展,374,14-23。
  41. 詹勳全、張嘉琪、陳樹群、魏郁軒、王昭堡、李桃生(2015)。台灣山區淺層崩塌地特性調查與分析。中華水土保持學報,46(1),19-28。
  42. 劉盈劭(2001)。地形敏感性的比較研究-以陳有蘭溪北段小支流為例。國立臺灣師範大學地理學系碩士論文。
  43. 劉盈劭(2013)。陳有蘭溪源流區之崩塌與土石流發生特性與空間差異:以和社溪流域為例。國立臺灣師範大學地理學系博士論文。
  44. 謝有忠、侯進雄、胡植慶、費立沅、陳宏仁、邱禎龍、詹瑜璋(2016)。地形計測方法應用於潛在大規模崩塌之判釋。航測及遙測學刊,20(4),263-277。
  45. 魏倫瑋、黃韋凱、黃春銘、李璟芳、林聖琪、紀宗吉(2015)。蘇迪勒颱風於臺灣北部之山崩致災機制初探。中華水土保持學報,46(4),223-232。
  46. 龔琪嵐、齊士崢(2004)。楠梓仙溪流域的河階地與地形演育。地理學報,38,47-62。
  47. 二、英文文獻
  48. Ashtekar, J. M., Owens, P. R., Brown, R. A., Winzeler, H. E., Dorantes, M., Libohova, Z., ... & Hempel, J. (2014). Digital mapping of soil properties and associated uncertainties in the Llanos Orientales, South America. Arrouays, D.; McKenzie, N, 367-372.
  49. Antonello, A., Franceschi, S., Floreancig, V., Comiti, F., & Tonon, G. (2017). Application of a pattern recognition algorithm for single tree detection from LiDAR data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W2, 27-33.
  50. Blyth, K. and J.C. Rodda (1973). A stream length study. Water Resources Research, 9, 1454-1461.
  51. Bovis, M. J., & Jakob, M. (1999). The role of debris supply conditions in predicting debris flow activity. Earth surface processes and landforms, 24(11), 1039-1054.
  52. Coe, J.A., Godt, J.W., Parise, M., & Moscariello, A. (2003). Estimating debris-flow probability using fan stratigraphy, historic records, and drainage-basin morphology, Interstate 70 highway corridor, central Colorado, USA. In USA Proceedings of the 3rd International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Davos (Switzerland) ,Vol. 2, 1085-1096.
  53. Day, D.G. (1978). Drainage density changes during rainfall. Earth Surface Processes and Landforms, 3, 319-326.
  54. Drăguţ, L. & Blaschke, T. (2006). Automated classification of landform elements using object-based image analysis. Geomorphology, 81(3-4), 330-344.
  55. De Scally, F.A., & Owens, I.F. (2004). Morphometric controls and geomorphic responses on fans in the Southern Alps, New Zealand. Earth Surface Processes and Landforms, 29(3),311-322.
  56. Devrani, R. and Singh, V. (2014). Evolution of valley-fill terraces in the Alaknanda Valley, NW Himalaya: Its implication on river response studies. Geomorphology, 227, 112-122.
  57. Dikau, R., Brabb, E. E., Mark, R. K., & Pike, R. J. (1995). Morphometric landform analysis of New Mexico. Zeitschrift fur Geomorphologie Supplementband, 109-126.
  58. Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Hsieh, M. L., Willett, S. D., ... & Lague, D. (2003). Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature, 426(6967), 648.
  59. Evans, I. (1972). General geomorphometry, derivatives of altitude, and descriptive statistics. In: Chorley, R.J. (Ed.), Spatial analysis in geomorphology. Methuen: Harper & Row, 17-90.
  60. Frankl, A., Lenaerts, T., Radusinović, S., Spalevic, V., & Nyssen, J. (2016). The regional geomorphology of Montenegro mapped using Land Surface Parameters. Zeitschrift für Geomorphologie, 60(1), 21-34. doi: 10.1127/zfg/2016/0221
  61. Gardiner, V. (1990). Drainage Basin Morphometry, in Andrew Goudie (Eds), Geomorphological Techniques (pp.79-91). New York: Routledge.
  62. Goudie, A.S. (2004). Encyclopedia of Geomorphology. London; New York: Routledge.
  63. Gregory, K.J. and V. Gardiner (1975). Drainage density and climate. Zeitschrift für Geomorphologie, 19, 287-298.
  64. Harvey, A.M. (2001). Coupling between hillslopes and channels in upland fluvial systems: implications for landscape sensitivity, illustrated from the Howgill Fells, northwest England. Catena, 42(2-4), 225-250.
  65. Hovius, N., Stark, C., Hao‐Tsu, C., & Jiun‐Chuan, L. (2000). Supply and Removal of Sediment in a Landslide‐Dominated Mountain Belt: Central Range, Taiwan. The Journal of Geology, 108(1), 73-89. doi: 10.1086/314387
  66. Jackson, L.E., Kostaschuk, R.A. and MacDonald, G.M. (1987). Identification of debris flow hazard on alluvial fans in the Canadian Rocky Mountains. In J.E. Costa & G.F.Wieczorek(eds), Debris Flows/Avalanches: Process, Recognition, and Mitigation, Reviews in Engineering Geology,7,115-124.
  67. Jackson, Julia A (1997). Glossary of geology. Alexandria, Va: American Geological Institute.
  68. Jasiewicz, J., & Stepinski, T. F. (2013). Geomorphons—a pattern recognition approach to classification and mapping of landforms. Geomorphology, 182, 147-156.
  69. Kramm, T., Hoffmeister, D., Curdt, C., Maleki, S., Khormali, F., & Kehl, M. (2017). Accuracy assessment of landform classification approaches on different spatial scales for the Iranian loess plateau. ISPRS International Journal of Geo-Information, 6(11), 366. doi: 10.3390/ijgi6110366
  70. Leopold, L.B. and J.P. Miller (1956). Ephemeral streams-hydraulic factors and their relation to the drainage net. U.S. Geological Survey Professional Paper, 282-A, 1-37.
  71. Luo, W., & Liu, C. C. (2018). Innovative landslide susceptibility mapping supported by geomorphon and geographical detector methods. Landslides, 15(3), 465-474.doi: 10.1007/s10346-017-0893-9
  72. MacMillan, R. A., & Shary, P. A. (2009). Landforms and landform elements in geomorphometry. Developments in soil science, 33, 227-254.
  73. Norini, G., Zuluaga, M. C., Ortiz, I. J., Aquino, D. T., & Lagmay, A. M. F. (2016). Delineation of alluvial fans from Digital Elevation Models with a GIS algorithm for the geomorphological mapping of the Earth and Mars. Geomorphology, 273, 134-149.
  74. Onda, Y. (1992). Influence of water storage capacity in the regolith zone on hydrological characteristics, slope processes and slope form. Zeit. Geomorph. N.F., 36, 165-178.
  75. Patton, P.C. (1988). Drainage basin morphometry and floods. In V.R. Baker, R.C. Kochel, & P.C. Patton (Eds.), Flood geomorphology (pp. 51-64). New York, NY: John Wiley and Sons.
  76. Patton, P.C. and V.R. Baker (1976). Morphometry and floods in small drainage basins subject to diverse hydrogeomorphic controls. Water Resources Research, 12, 941-952.
  77. Pike, R. (1988). The geometric signature: quantifying landslide-terrain types from digital elevation models. Mathematical Geology, 20, 491-511.
  78. Pierson, T. C. (2005). Distinguishing between debris flows and floods from field evidence in small watersheds. U.S. Geological Survey Fact Sheet, 2004-3142, 4 p.
  79. Strahler, A.N.(1964).Quantitative geomorphology of drainage basins and channel networks. In V.T. Chow (Eds), Handbook of applied hydrology (pp.4-40 to 4-74). New York, NY: McGraw Hill.
  80. Schmidt, J. & Hewitt, A. (2004). Fuzzy land element classification from DTMs based on geometry and terrain position. Geoderma, 121(3-4), 243-256.
  81. Schrott, L., Hufschmidt, G., Hankammer, M., Hoffmann, T., & Dikau, R. (2003). Spatial distribution of sediment storage types and quantification of valley fill deposits in an alpine basin, Reintal, Bavarian Alps, Germany. Geomorphology, 55(1-4), 45-63.
  82. Stepinski, T.F. & Jasiewicz, J. (2011). Geomorphons-a new approach to classification of landforms. Proceedings of Geomorphometry, 2011, 109-112.
  83. Silva, S. H. G., Menezes, M. D. D., Mello, C. R. D., Góes, H. T. P. D., Owens, P. R., & Curi, N. (2016). Geomorphometric tool associated with soil types and properties spatial variability at watersheds under tropical conditions. Scientia Agricola, 73(4), 363-370.
  84. van Asselen, S., & Seijmonsbergen, A. C. (2006). Expert-driven semi-automated geomorphological mapping for a mountainous area using a laser DTM. Geomorphology, 78(3-4), 309-320.
  85. Veselský, M., Bandura, P., Burian, L., Harciníková, T. & Bella, P. (2015). Semi-automated recognition of planation surfaces and other flat landforms: a case study from the Aggtelek Karst, Hungary. Open Geosciences, 7(1).doi: 10.1515/geo-2015-0063
  86. Wilford, D. J., Sakals, M. E., Innes, J. L., Sidle, R. C., & Bergerud, W. A. (2004). Recognition of debris flow, debris flood and flood hazard through watershed morphometrics. Landslides, 1(1), 61-66.
  87. Wood, J. (1996). The geomorphological characterisation of digital elevation models(Doctoral dissertation). Retrieved from https://lra.le.ac.uk/handle/2381/34503
  88. Wohl, E. (2000). Mountain Rivers. Washington, DC: American Geophysical Union.
  89. Yokoyama, R., Shlrasawa, M., Pike, R.J. (2002). Visualizing topography by openness: a new application of image processing to digital elevation models. Photogrammetric Engineering and Remote Sensing, 68, 257-265.
  90. 三、日文文獻
  91. 鈴木隆介、砂村継夫、松倉公憲(2017)。地形の辞典。京都,日本:日本地形学連合。
  92. 四、網路資料
  93. 国土地理院(無日期)。4.河川の作用による地形。取自:http://www.gsi.go.jp/kikaku/tenkei_kasen.html
  94. 行政院農業委員會林務局農林航空測量所(無日期)。航空攝影紀錄資料。取自:https://www.afasi.gov.tw/aerial_search
  95. 行政院農業委員會水土保持局(無日期)。重大土石災情報告。取自:http://246.swcb.gov.tw/disasterInfo/ImpDisasterReport.aspx
  96. 交通部中央氣象局(無日期)。觀測資料查詢。取自:https://e-service.cwb.gov.tw/HistoryDataQuery/index.jsp?fbclid=IwAR0fePrS_VwPqjIK3RWIHtwTdR6738tm_lRhgGWNv1bIQjQn7OQBrUKQbh8