透過您的圖書館登入
IP:18.216.230.107
  • 學位論文

生物炭對叢枝菌根菌產孢量和宿主植物生長之影響

Effects of Biochar on the Sporulation of Arbuscular Mycorrhizal Fungiand Growth of Host-plant

指導教授 : 張焜標

摘要


近年來生物炭作為土壤改良劑於是一項新興且受到關注的土壤改良方法,然關於添加生物炭至土壤對叢枝菌根菌影響的研究則較缺乏。本研究目的主要為了解生物炭作為添加劑對叢枝菌根菌純種孢子培養及其宿主生長之影響。本文探討之問題包含(1)應用稻殼及相思樹木材以不同溫度製成生物炭,並以不同比例添加至矽砂,對於試驗後化學特性及大量元素變化的影響;(2)稻殼生物炭及相思樹木材生物炭之熱解溫度及添加比例對細穗草與相思樹幼苗之生長量、生物量及植體養分的影響;(3)稻殼生物炭及相思樹木材生物炭之熱解溫度及添加比例對叢枝菌根菌感染率、感染強度及孢子生產的影響;(4)混炭矽砂、宿主植物與叢枝菌根菌三者間的相互影響。 本研究結果顯示矽砂混合稻殼炭或相思樹炭,試驗後pH隨製炭溫度增加而提高,但隨添加量增加而減低,且均低於對照組(純矽砂,CK);有效性Ca、K及Mg均隨製炭溫度增加而降低,並隨添加比例增加而提高,但有效性Na和P則反。混炭矽砂之有效性養分濃度均高於CK。 矽砂混合稻殼炭培育細穗草24 weeks,其電導度均低於CK,不同炭溫及炭量處理間無顯著差異;CEC隨製炭溫度增加而減低,添加比例間則無顯著差異;OM於不同炭溫處理間無顯著差異,但隨添加量增加而提高。矽砂混合相思樹炭培育相思樹幼苗48 weeks,其EC均高於CK,但不同炭溫及炭量處理間無顯著差異;CEC及OM均為300℃ > 500℃ > 700℃ > CK,5% > 3% > 1% > CK。 細穗草以矽砂添加稻殼炭培育,其生物量隨稻殼炭之製炭溫度減少,但隨稻殼炭之添加比例增加而提高。相思樹幼苗以矽砂添加相思樹炭培育,其生長量以添加300℃及500℃相思樹炭之處理為較好,添加700℃之處理為最差,並以矽砂添加3%及5%相思樹炭之處理有較好的生長量;相思樹幼苗的生物量隨相思樹炭之製炭溫度增加而減少,另以添加比例3%之處理有較好的趨勢,但於統計上無顯著差異。稻殼炭及相思樹炭添加至矽砂,隨製炭溫度及添加比例增加,分別提高細穗草及相思樹幼苗的N、C、P、K、Mn及Zn濃度,及減低Ca、Mg、Na、Fe及Cu濃度,唯一不同的是,矽砂混合相思樹炭促進相思樹幼苗自地下部運輸Fe至地上部。 矽砂混合稻殼炭或相思樹炭對叢枝菌根菌Glomus mosseae及G. spurcum之感染率無顯著影響,但均以混合300℃或500℃生物炭添加1%、3%及5%有較高的感染強度。無論宿主為細穗草或相思樹,G. mosseae產孢量均於矽砂混300℃稻殼炭或相思樹炭之處理為較多,G. spurcum之產孢量於矽砂添加5%之300℃稻殼炭或相思樹炭為最多。G. mosseae接種於相思樹以純矽砂培育之產孢量,如同矽砂混合300℃稻殼炭或相思樹炭之處理一樣為較高,G. mosseae接種於細穗草及G. spurcum接種於細穗草和相思樹,以矽砂培養之產孢量均較低。 生物炭添加至矽砂直接改變土壤養分有效性和間接提高植物生長,進而影響叢枝菌根菌的產孢,此外,接種叢枝菌根菌可直接促進植物的生長及間接改變土壤的特性。因此,植物接種叢枝菌根菌於矽砂混合生物炭可得到更好的生長勢。

並列摘要


Biochar used as a soil amender is an emerging and effective soil improvement mathod, but there are few studies on the effects of biochar soil on arbuscular mycorrhizal fungi (AMF). The issues discussed include (1) the effects of varying pyrolysis temperatures on rice husk biochar (RHC) and acacia wood biochar (AWC) and the ratio of biochar: silicon sand on chemical properties and nutrients variation; (2) the effects of varying pyrolysis temperature of biochar and biochar: silicon sand ratio on Lepturus repens and Acacia confusa seedling growth, biomass, and plant nutrient absorbtion; (3) the effects of varying pyrolysis temperature of biochar and biochar: silicon sand ratio on AMF infection rate, and the infection intensity, and sporulation, and (4) the interactions among the biochar-mixed silicon sand, host plant and arbuscular mycorrhizal fungi. The results showed that pH of silicon sand mixed with RHC or AWC increased with high pyrolysis temperatures, but decreased with elevated biochar: silicon sand ratio, and lower than control group (pure silicon sand, CK). Available Ca, K and Mg concentrations were reduced with increased pyrolysis temperature, and increased with biochar: silicon sand ratio, but opposited in available N and P. Available nutrients of biochar-mixed silicon sand were higher than CK. Electrical conductivity (EC) of RHC-mixed silicon sand used to culture L. repens over 24 weeks was lower than CK. There were no significant differences among pyrolysis temperature or biochar: silicon sand ratio. Cation exchange capacity (CEC) was reduced with increased pyrolysis temperature, but was no significant different among biochar : silicon sand ratio. Organize matter (OM) was not significantly different among pyrolysis temperatures, but increased with elevated biochar: silicon sand ratio. EC of AWC-mixed silicon sand added to cultured Acacia confusa seedlings over 48 weeks was higher than CK, but there were no significant differences among pyrolysis temperatures or AWC: silicon sand ratio. CEC and OM were 300℃ > 500℃ > 700℃ > CK, 5% > 3% > 1% > CK. The biomass of L. repens cultured by RHC-mixed silicon sand decreased with high temperature pyrolysis RHC, but increased with elevated RHC: silicon sand ratio. The growth of A. confusa cultured by AWC-mixed silicon sand was best with 300℃ and 500℃ AWC, but worst with 700℃ AWC. RHC: silicon sand ratios of 3% and 5% had the best growth, but showed no significant difference among AWC: silicon sand ratios. RHC and AWC addition to silicon sand increased N, C, P, K, Mn and Zn concentration with increased pyrolysis temperatures and higher RHC: silicon sand and AWC: silicon sand ratios, but decreased Ca, Mg, Na, Fe and Cu concentrations. Only AWC-mixed silicon sand was found to stimulate A. confusa seedling transport of Fe from root to shoot. There were no significant effects of RHC-mixed or AWC-mixed silicon sand on infection rate of Glomus mosseae and G. spurcum. The highest infection intensities were for silicon sand mixed with 1%, 3%, and 5% RHC and AWC of 300℃ or 500℃ pyrolysis. The highest sporulation of G. mosseae was silicon sand mixed with 300℃ RHC or AWC, and the highest sporulation of G. spurcum was silicon sand mixed with 5% of 300℃ RHC and AWC. Sporulation of G. mosseae inoculated in Acacia confusa seedlings grown in pure silicon sand was the same as silicon sand mixed with 300℃ AWC. The sporulation of G. mosseae inoculated in L. repens and G. spurcum inoculated in Acacia confusa and L. repens were higher than pure silicon sand. Added biochar to silicon sand can directly change availability of soil nutrients, indirectly increase plant growth, and promote AMF sporulation. Inoculated AMF can directly improve growth of plants and indirectly change soil properties. Thus, growth of plant inoculated with AMF in biochar-mixed silicon sand can get better growth form.

參考文獻


王均俐 (2007) 微生物肥料菌根菌應用於經濟果樹之栽培。農業生技產業季刊 12: 42-48。
呂斯文、張喜寧 (1993) 利用濾膜表面發芽法進行繡球屬與大孢子屬孢子發芽生理試驗。中菌會刊 8(3/4): 1-19。
林大方 (2013) 生物炭材料與熱解溫度對其農藝性能的影響。國立臺灣大學生物資源暨農學院森林環境暨資源學系碩士論文。63頁。
林子超、顏江河 (2010) 台灣西部海岸林適生植物內生菌根菌調查研究。林業研究季刊32(4): 23-34。
倪禮豐 (2007) 稻殼再利用技術。花蓮區農業專訊 61: 19-20。

被引用紀錄


黃玟菁(2015)。武威山烏皮茶扦插苗接種叢枝菌根菌之生長效應〔碩士論文,國立屏東科技大學〕。華藝線上圖書館。https://doi.org/10.6346/NPUST.2015.00009

延伸閱讀