透過您的圖書館登入
IP:3.135.209.44
  • 期刊

氣候變遷下美洲含羞草的空間防治優先性

Spatial Prioritization for Invasion Prevention of an Invasive Plant, Mimosa Diplotricha under Climate Change

摘要


氣候變遷可能驅使入侵生物的分布擴張,掌握入侵擴散的空間資訊,有助遏阻或減緩其蔓延。本研究 以美洲含羞草(Mimosa diplotricha)為例,透過MaxEnt與MigClim模式,模擬其入侵分布動態,並整合結構與功能連接度,建構氣候變遷下的空間防治策略。研究結果顯示,美洲含羞草偏好日夜溫度波動明顯的溫暖環境,暖化可能有利其分布擴張,預估未來將自當前棲地範圍,持續往北延伸擴張,惟促進擴散的關鍵途徑,將因暖化程度不同,而有所差異。整體而言,無論何種暖化情境,現有棲地範圍的北緣,皆應優先獲得控制,此外,隨暖化情勢的加劇,則更應側重未來促進擴散風險區位的防禦。

並列摘要


Climate change may drive the range expansion of invasive species. Integrations of spatially explicit information are useful for preventing and managing. In this study, we used MaxEnt and MigClim modelling approaches to map current and future distribution dynamic of the invasive plant, Mimosa diplotricha. Then, structural and functional connectivity was integrated to develop the prevention strategies under climate change scenarios. The results showed that the suitable niche of M. diplotricha was a warm environment with the large variation in day-night temperature. The range of this species may increase due to a warming climate, with future expansion to the north of current suitable habitats. However, the critical routes of dispersal is likely to vary with the degree of warming. In conclusion, regardless of the warming scenario, the northern edge of the present habitat should be prioritized for control. In addition, as the warming increases, more attention should be paid to the defense of invasion risk areas in the future.

參考文獻


曾琦閔、侯金日,2015。含羞草 (Mimosa pudica L.) 及美洲含羞草 (Mimosa diplotricha) 無休眠種子發芽特性之研究,中華民國雜草學會刊,36:131-151,DOI:10.6274/WSSROC-2015-0036(2)-131。[Tzeng, C.M., and Hou, C.J., 2015. Studies on the no dormancy seed germination characteristics of Mimosa pudica L. and Mimosa diplotricha, Weed Science Bulletin, 36(2): 131-151, DOI: 10.6274/WSSROC-2015-0036(2)-131. (in Chinese)]
Ekhator, F., Uyi, O.O., Ikuenobe, C.E., and Okeke, C.O., 2013. The distribution and problems of the invasive alien plant, Mimosa diplotricha C. Wright ex Sauvalle (Mimosaceae) in Nigeria, American Journal of Plant Sciences, 4: 866-877, DOI: 10.4236/ajps.2013.44107
Lin, C.Y., and Tung, C.P., 2017. Procedure for selecting GCM datasets for climate risk assessment, Terrestrial, Atmospheric and Oceanic Sciences, 28: 43-55, DOI: 10.3319/TAO.2016.06.14.01(CCA)
Wu, S.H., Chaw, S.M., and Rejmánek, M., 2003. Naturalized Fabaceae (Leguminosae) species in Taiwan: The first approximation, Botanical Bulletin of Academia Sinica, 44: 59-66, DOI: 10.7016/BBAS.200301.0059
Aiello‐Lammens, M.E., Boria, R.A., Radosavljevic, A., Vilela, B., and Anderson, R.P., 2015. spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models, Ecography, 38: 541-545, DOI: 10.1111/ecog.01132

延伸閱讀