透過您的圖書館登入
IP:18.219.24.193
  • 期刊

生質丁醇-基因改造菌種之研究近況

Biobutanol-Recent Research on the Genetic Engineering of Microbial Solvent Production

摘要


利用丁醇生產菌種(Clostridia)進行ABE發酵作用,是生產生質丁醇最主要的方法。降低生質丁醇的製造成本,是發展生質丁醇工業的首要任務。而達到降低製造成本最根本的方式,就是得到一株高效能的丁醇生產菌種。與傳統的基因突變及篩選方法相比較,基因改造工程(DNA重組技術)是一種更強大、更有效率的技術,用來製造高效能的丁醇生產菌種。對於丁醇生產菌種而言,基因改造工程著重於將一些重要的蛋白質進行修飾,這些蛋白質主要會作用於溶劑生產的代謝路徑上。在現階段的丁醇產量發展上,利用菌種基因改造技術仍無法有明顯的突破,然而近來對於丁醇生產菌種進行全面性的轉錄體學與蛋白質體學的研究,將有助於擬定更有效率的菌種基因改造策略。此外,基於碳源利用、實驗操作與生產製程的考量,使用其他菌種(例如:E. coli)來生產丁醇,也是具有發展潛力的作法。

並列摘要


Biobutanol is mainly produced by ABE fermentation of Clostridia. The key problem associated with the industrial bioproduction of butanol is the cost of substrate. This problem can be overcome by using hyper-butanol-producing strains of Clostridia. Compared with the traditional mutagenesis and selection, the genetic engineering (recombinant DNA technology) is a more powerful and efficient way that generates hyper-butanol-producing strains. In Clostridia, the genetic engineering is employed to modify important proteins which function in the metabolism of solventogenic pathway. Up to the present, hyper-butanol-producing strains of Clostridia are not yielded and the genetic engineering of Clostridia has no obvious improvement in the productivity of biobutanol. However, the more efficient strategies on genetic engineering of Clostridia can be made through comprehensive studies of transcriptomics and proteomics in Clostridia recently. In addition, the bioproduction of butanol produced by using non-Clostridia bacteria (e.g., E. coli) may be a potential progress to take account of the using of carbon source, the conducting of fermentation and the total process of biobutanol industry.

被引用紀錄


郭順宇(2012)。正丁醇-汽油混合燃料應用在汽油噴射引擎可行性之分析〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-2506201214320200
陳民哲(2013)。不同醇類FT燃料在柴油引擎上之適用性研究〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-1001201411044500

延伸閱讀