透過您的圖書館登入
IP:3.16.69.143
  • 學位論文

氣體輔助熱壓陽極氧化鋁模具製作生醫檢測元件之研究

Fabrication of Biosensor Components by Using Gas-Assisted Hot Embossing and AAO Mold

指導教授 : 楊申語

摘要


高產量、低成本的生醫檢測元件為生醫產業重要的課題;但現行的光學檢測元件,其奈米結構大多仰賴電子束或離子束等加工方式,加工時間長且昂貴。本研究結合陽極氧化鋁奈米孔洞模具及氣體輔助熱壓成型技術,於PC基材表面製作出奈米結構,以達到快速且低成本的需求,並探討其於表面電漿共振以及表面增強拉曼散射等兩種檢測技術之應用。 本研究製作陽極氧化鋁(AAO)模具,以不同的外加電壓搭配所需之電解液製得不同的奈米孔洞間距,並以擴孔時間來控制孔洞直徑。使用氣體輔助熱壓成型技術將高分子PC基材均勻的充填於模具中,製作出奈米柱狀結構,配合離子鍍金機可製作出金奈米柱狀結構與金奈米管狀結構並應用於生醫檢測。 在表面電漿共振方面,檢測中須使用稜鏡使光發生全反射並激發電漿子,而此稜鏡常使得儀器的架設較昂貴且複雜。本研究提出使用具有V-cut微結構之電鑄鎳模具對PC基材進行熱壓,製作出V-cut微結構以取代該稜鏡,在PC基材的另一面鍍上的金,以自組裝之量測儀器進行量測,量測結果與理論值相符合,當入射角在41°至45°之間皆可激發表面電漿共振。 在表面增強拉曼散射方面,由於奈米等級的粗糙金屬表面可以增強拉曼散射的訊號強度,而若奈米結構的間距越靠近,其增強的效果越佳。將鍍了金的陽極氧化鋁模具使用氣體輔助熱壓技術將金轉印至PC基材表面可製得金奈米管狀結構。本研究提出使用氧電漿清潔機蝕刻奈米管中之PC奈米柱,製作出更複雜之奈米結構,以進一步提升表面增強拉曼散射之效果。檢測對-巰基苯甲酸(p-mercaptobenoic acid,PMBA)的拉曼散射光譜,使用氧電漿蝕刻後之拉曼訊號比蝕刻前提升了將近一倍。

並列摘要


Fabricating productive and low-cost biosensor has been an important issue in bio-field. However, most of the nanostructures of the biosensors are fabricated by E-beam or focused ion-beam, which is expensive and time-consuming. This study presents a fast and low-cost approach, combining anodic aluminum oxide (AAO) mold and gas-assisted hot embossing to fabricate nanostructures on the surface of polycarbonate (PC). Furthermore, the applications in surface plasmon resonance (SPR) and surface-enhanced Raman spectroscopy (SERS) are demonstrated. The nano-holes array AAO molds with different pitches were fabricated via two-step anodization with different voltages, and the size of the diameter of the nanoholes can be controlled by the widening time. For the application in SPR, the prism makes the measure instruments more complicated and expensive. This study presents that fabricating V-cut microstructure on the surface of PC and sputtering 50 nm gold on the other side to substitute the prism to simplify the measure instrument. The measured spectrum is conformed to the theory of Prism coupler metal layer analyte. When the incident angle is between 41° to 45°, there is an extra dip appeared around 700 nm. For the application in SERS, previous studies have shown that if the pitch of nanostructures gets smaller, the enhancement will be stronger. In this study, a novel method to fabricate nanostructure is adopted. First, 50 nm gold is sputtered on the surface of the AAO mold, the gold-coated micro/nanostructure is transferred to PC by using gas-assisted hot embossing. Gold-coated nanotubes on the surface of PC are obtained. After that, plasma cleansing is used to etch the PC nanopillars in the gold nanotubes. Then 20 nm gold is sputtered to cover the nanostructures. After immersing the nanostructures in aqueous solutions of p-mercaptobenzoic acid (PMBA), the SERS spectrum showed that the morphology of the nanostructures further enhances the SERS performance.

參考文獻


[1] C. A. Rowe-Taitt, J. W. Hazzard, K. E. Hoffman, J. J. Cras, J. P. Golden and F. S. Ligler, “Simultaneous detection of six biohazardous agents using a planar waveguide array biosensor”, Biosensors and Bioelectronics, Vol. 15, pp. 579-589 (2000)
[2] 張哲豪,流體微熱壓製程開發研究,國立台灣大學博士論文,民國93年6月。
[4] J. Homola, S. S. Yee and G. Gauglitz, “Surfaceplasmonresonance sensors- review”, Sensors and Actuators B, Vol. 54, pp. 3-15 (1999)
[5] P. O. Markgren, M. Hamalainen and U. H. Danielson, “Screening of compounds interacting with HIV-1 proteinase using optical biosensor technology”, Analytical Biochemistry, Vol. 265, pp. 340-350 (1998)
[6] G. Zeder-Lutz, A. R. Neurath, and M. H. V. Regenmortel, “Kinetics of interaction between 3-hydroxyphthaloyl-beta-lactoglobulin and CD4 molecules”, Biologicals, Vol. 27, pp. 29-34 (1999)

延伸閱讀